Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\]
उत्तर
\[\lim_{x \to 3} \left[ \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}} \right]\] It is of form \[\frac{0}{0} .\]
Rationalising the denominator:
=\[\lim_{x \to 3} \left[ \frac{\left( x - 3 \right)\left( \sqrt{x - 2} + \sqrt{4 - x} \right)}{\left( \sqrt{x - 2} - \sqrt{4 - x} \right)\left( \sqrt{x - 2} + \sqrt{4 - x} \right)} \right]\]
=\[\lim_{x \to 3} \left[ \frac{\left( x - 3 \right)\left( \sqrt{x - 2} + \sqrt{4 - x} \right)}{\left( x - 2 \right) - \left( 4 - x \right)} \right]\]
=\[\lim_{x \to 3} \left[ \frac{\left( x - 3 \right)\left( \sqrt{x - 2} + \sqrt{4 - x} \right)}{2x - 6} \right]\]
=\[\lim_{x \to 3} \left[ \frac{\left( x - 3 \right)\left( \sqrt{x - 2} + \sqrt{4 - x} \right)}{2\left( x - 3 \right)} \right]\]
=\[\frac{\sqrt{3 - 2} + \sqrt{4 - 3}}{2}\]
=\[\frac{\sqrt{1} + \sqrt{1}}{2}\]
=\[\frac{2}{2} = 1\]
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`
If f(x) = `{(|x| + 1,x < 0), (0, x = 0),(|x| -1, x > 0):}`
For what value (s) of a does `lim_(x -> a)` f(x) exists?
if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`
For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?
\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\]
\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\]
\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - \sqrt{x + 1}}{2 x^2}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\]
\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]
\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\]
\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]
\[\lim_{x \to 0} \frac{a^{mx} - 1}{b^{nx} - 1}, n \neq 0\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\]
\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\]
\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\]
\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]
\[\lim_{x \to 0} \frac{x\left( 2^x - 1 \right)}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\]
`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`
`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`
\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\]
\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\]
`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`
\[\lim_{x \to 0} \frac{3^{2 + x} - 9}{x}\]
\[\lim_{x \to 0} \frac{a^x - a^{- x}}{x}\]
\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]
\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]
\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]
\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]
\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]
Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]
Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`