हिंदी

Lim X → 7 4 − √ 9 + X 1 − √ 8 − X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\] 

उत्तर

\[\lim_{x \to 7} \left[ \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}} \right]\] It is of the form \[\frac{0}{0}\] 

Rationalising the numerator and the denominator: 

\[\lim_{x \to 7} \left[ \frac{\left( 4 - \sqrt{9 + x} \right)}{1} \times \frac{\left( 4 + \sqrt{9 + x} \right)}{\left( 4 + \sqrt{9 + x} \right)} \times \frac{1}{\left( 1 - \sqrt{8 - x} \right)} \times \frac{\left( 1 + \sqrt{8 - x} \right)}{\left( 1 + \sqrt{8 - x} \right)} \right]\] 

=  \[\lim_{x \to 7} \left[ \frac{16 - \left( 9 + x \right)}{\left( 4 + \sqrt{9 + x} \right)} \times \frac{\left( 1 + \sqrt{8 - x} \right)}{1 - \left( 8 - x \right)} \right]\] 

=  \[\lim_{x \to 7} \left[ \frac{- 1\left( - 7 + x \right)\left( 1 + \sqrt{8 - x} \right)}{\left( 4 + \sqrt{9 + x} \right)\left( - 7 + x \right)} \right]\] 

=  \[\lim_{x \to 7} \left[ \frac{- \left( 1 + \sqrt{8 - x} \right)}{4 + \sqrt{9 + x}} \right]\] 

= \[- \left( \frac{1 + \sqrt{8 - 7}}{4 + \sqrt{9 + 7}} \right)\]

=  \[\frac{- 2}{4 + 4}\] 

=  \[\frac{- 1}{4}\] 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.4 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.4 | Q 15 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`


If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.


\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x}\]


\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]


\[\lim_{x \to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x - 1}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\] 


\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\] 


\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\] 


\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - \sqrt{x + 1}}{2 x^2}\] 


\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\] 


\[\lim_{x \to 0} \frac{5^x - 1}{\sqrt{4 + x} - 2}\]


\[\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{x^2}\]


\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]


\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]


\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\] 


\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]


\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\] 


`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`


`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`


\[\lim_{x \to 0} \frac{3^{2 + x} - 9}{x}\]


\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]


\[\lim_{x \to \infty} \left\{ \frac{x^2 + 2x + 3}{2 x^2 + x + 5} \right\}^\frac{3x - 2}{3x + 2}\]


\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


Write the value of \[\lim_{n \to \infty} \frac{n! + \left( n + 1 \right)!}{\left( n + 1 \right)! + \left( n + 2 \right)!} .\]


Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×