Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]
उत्तर
\[\lim_{x \to 0} \left[ \frac{x \left( e^x - 1 \right)}{1 - \cos x} \right]\]
Dividing the numerator and the denominator by x2:
\[= \lim_{x \to 0} \left[ \frac{\left( \frac{e^x - 1}{x} \right)}{\left( \frac{1 - \cos x}{x^2} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{e^x - 1}{x} \times \frac{1}{\frac{2 \sin^2 \left( \frac{x}{2} \right)}{4 \times \frac{x^2}{4}}} \right]\]
\[ = 1 \times \frac{2}{1^2}\]
\[ = 2\]
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 1)` f(x), where `f(x) = {(x^2 -1, x <= 1), (-x^2 -1, x > 1):}`
Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).
What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`
\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x - 1}\]
\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\]
\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^3 - 1}\]
\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - \sqrt{x + 1}}{2 x^2}\]
\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\]
\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]
\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\]
\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]
\[\lim_{x \to 0} \frac{9^x - 2 . 6^x + 4^x}{x^2}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\]
\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]
\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]
\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\]
`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`
\[\lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}}\]
\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\]
`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`
\[\lim_{x \to 0} \frac{3^{2 + x} - 9}{x}\]
\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]
\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]
\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]
\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\]
Write the value of \[\lim_{n \to \infty} \frac{n! + \left( n + 1 \right)!}{\left( n + 1 \right)! + \left( n + 2 \right)!} .\]
Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`