हिंदी

Lim X → 0 √ 1 + X − √ 1 − X 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]

उत्तर

\[\lim_{x \to 0} \left[ \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x} \right]\] It is of the form\[\frac{0}{0} .\] 

Rationalising the numerator:

\[\lim_{x \to 0} \left[ \frac{\left( \sqrt{1 + x} - \sqrt{1 - x} \right)\left( \sqrt{1 + x} + \sqrt{1 - x} \right)}{2x\left( \sqrt{1 + x} + \sqrt{1 - x} \right)} \right]\] 

\[\lim_{x \to 0} \left[ \frac{\left( 1 + x \right) - \left( 1 - x \right)}{2x\left( \sqrt{1 + x} + \sqrt{1 - x} \right)} \right]\] 

\[\lim_{x \to 0} \left[ \frac{2x}{2x\left( \sqrt{1 + x} + \sqrt{1 - x} \right)} \right]\] 

\[\frac{1}{\sqrt{1 + 0} + \sqrt{1 - 0}}\] 

\[\frac{1}{2}\] 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.4 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.4 | Q 4 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find `lim_(x -> 1)` f(x), where `f(x) = {(x^2 -1, x <= 1), (-x^2 -1, x > 1):}`


Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`


Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).

What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`


if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`

For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?


\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] 


\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\] 


\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\] 


\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\] 


\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\] 


\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - \sqrt{x + 1}}{2 x^2}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\] 


\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]


\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\] 


\[\lim_{x \to 0} \frac{5^x - 1}{\sqrt{4 + x} - 2}\]


\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]


\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]


\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]


\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]


\[\lim_{x \to 0} \frac{a^x + b^ x - c^x - d^x}{x}\]


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log \left( a - x \right)}{x}\]


`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`


\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\] 


\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\] 


\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\] 


`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`


\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]


\[\lim_{x \to \pi/2} \frac{2^{- \cos x} - 1}{x\left( x - \frac{\pi}{2} \right)}\]


\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\] 


Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]


Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×