Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{e^x - 1 + \sin x}{x}\]
उत्तर
\[\lim_{x \to 0} \left[ \frac{e^x - 1 + \sin x}{x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{e^x - 1}{x} + \frac{\sin x}{x} \right]\]
\[ = 1 + 1\]
\[ = 2\]
APPEARS IN
संबंधित प्रश्न
Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).
What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`
if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`
For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?
\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\]
\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x - 1}\]
\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\]
\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\]
\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\]
\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\]
\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]
\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\]
\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\]
\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]
\[\lim_{x \to 0} \frac{a^x + b^ x - c^x - d^x}{x}\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\]
\[\lim_{x \to 0} \frac{x\left( 2^x - 1 \right)}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\]
`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`
\[\lim_{x \to \pi/2} \frac{2^{- \cos x} - 1}{x\left( x - \frac{\pi}{2} \right)}\]
\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]
\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]
\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\]
Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]
Write the value of \[\lim_{n \to \infty} \frac{n! + \left( n + 1 \right)!}{\left( n + 1 \right)! + \left( n + 2 \right)!} .\]
Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]
Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`