Advertisements
Advertisements
Question
\[\lim_{x \to 0} \frac{a^x + b^ x - c^x - d^x}{x}\]
Solution
\[\lim_{x \to 0} \left[ \frac{a^n + b^n - c^n - d^n}{x} \right]\]
\[ \lim_{x \to 0} \left[ \frac{a^n + b^n - 2 - c^n - d^n + 2}{x} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( a^n - 1 \right) + \left( b^n - 1 \right) - \left( c^n - 1 \right) - \left( d^n - 1 \right)}{x} \right]\]
\[ = \lim_{x \to 0} \left[ \left( \frac{a^n - 1}{x} \right) + \left( \frac{b^n - 1}{x} \right) - \left( \frac{c^n - 1}{x} \right) - \left( \frac{d^n - 1}{x} \right) \right]\]
\[ = \log a + \log b - \log c - \log d\]
\[ = \left( \log a + \log b \right) - \left( \log c + \log d \right)\]
\[ = \log \left( ab \right) - \log \left( cd \right)\]
\[ = \log \left( \frac{ab}{cd} \right)\]
APPEARS IN
RELATED QUESTIONS
Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`
if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`
For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?
\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\]
\[\lim_{x \to 2} \frac{x - 2}{\sqrt{x} - \sqrt{2}}\]
\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\]
\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\]
\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\]
\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\]
\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\]
\[\lim_{x \to 0} \frac{9^x - 2 . 6^x + 4^x}{x^2}\]
\[\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{x^2}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\]
\[\lim_{x \to 2} \frac{x - 2}{\log_a \left( x - 1 \right)}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log \left( a - x \right)}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{\log \left( 1 + x \right)}\]
\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\]
`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`
\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\]
`\lim_{x \to 0} \frac{e^\tan x - 1}{\tan x}`
\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\]
\[\lim_{x \to 0} \frac{a^x - a^{- x}}{x}\]
\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]
Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]
Write the value of \[\lim_{n \to \infty} \frac{n! + \left( n + 1 \right)!}{\left( n + 1 \right)! + \left( n + 2 \right)!} .\]
Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`
Evaluate: `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`
Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.