English

Lim X → 0 { E X + E − X − 2 X 2 } 1 / X 2 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]

Solution

\[\lim_{x \to 0} \left[ \frac{e^x + e^{- x} - 2}{x^2} \right]^\left( \frac{1}{x^2} \right) \]
\[ = \lim_{x \to 0} \left[ 1 + \frac{e^x + e^{- x} - 2}{x^2} - 1 \right]^\left( \frac{1}{x^2} \right) \]
\[ = e {}^\lim_{x \to 0} \left( \frac{e^x + e^{- x} - 2}{x^2} - 1 \right) \times \left( \frac{1}{x^2} \right) \]
\[ \because e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . . . . . \propto \]
\[ e^{- x} = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + . . . . . . \propto \]
\[ \Rightarrow e^x + e^{- x} = 2 + \frac{2 x^2}{2!} + \frac{2 x^4}{4!} + . . . . . \propto \]
\[ = e^\lim_{x \to 0} \left( \frac{2 + \frac{2 x^2}{2!} + \frac{2 x^4}{4!} . . . \propto - 2}{x^2} - 1 \right) \times \left( \frac{1}{x^2} \right) \]
\[ = e^\lim_{x \to 0} \left( \frac{\frac{2 x^2}{2!} + \frac{2 x^4}{4!} + . . . . . . \propto}{x^4} - \frac{1}{x^2} \right) \]
\[ = e^\lim_{x \to 0} \left( \frac{x^2 + \frac{x^4}{12} + . . . . . \propto - x^2}{x^4} \right) \]
\[ = e^\frac{1}{12}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.11 [Page 77]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.11 | Q 8 | Page 77

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`


Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`


Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`


Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).

What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`


If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`.


if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`

For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?


\[\lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{2 - x}\] 


\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] 


\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 1} \frac{\left( 2x - 3 \right) \left( \sqrt{x} - 1 \right)}{3 x^2 + 3x - 6}\]


\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]


\[\lim_{h \to 0} \frac{\sqrt{x + h} - \sqrt{x}}{h}, x \neq 0\] 


\[\lim_{x \to 0} \frac{5^x - 1}{\sqrt{4 + x} - 2}\]


\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]


\[\lim_{x \to 0} \frac{e^x - 1 + \sin x}{x}\]


\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\] 


\[\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x}\]


\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\] 


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log \left( a - x \right)}{x}\]


\[\lim_{x \to 0} \frac{\log \left( 2 + x \right) + \log 0 . 5}{x}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{\log \left( 1 + x \right)}\] 


\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\] 

 


`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`


\[\lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}}\]


`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`


\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\] 


\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\] 


\[\lim_{x \to 0} \frac{3^{2 + x} - 9}{x}\]


\[\lim_{x \to \pi/2} \frac{2^{- \cos x} - 1}{x\left( x - \frac{\pi}{2} \right)}\]


\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


Write the value of \[\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x} .\] 


Let f(x) be a polynomial of degree 4 having extreme values at x = 1 and x = 2. If `lim_(x rightarrow 0) ((f(x))/x^2 + 1)` = 3 then f(–1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×