English

Lim X → 0 √ 1 + X + X 2 − √ X + 1 2 X 2 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - \sqrt{x + 1}}{2 x^2}\] 

Solution

\[\lim_{x \to 0} \left[ \frac{\sqrt{1 + x + x^2} - \sqrt{x + 1}}{2 x^2} \right]\] It is of the form \[\frac{0}{0}\] 

Rationalising the numerator: 

\[\lim_{x \to 0} \left[ \frac{\left( \sqrt{1 + x + x^2} - \sqrt{x + 1} \right)\left( \sqrt{1 + x + x^2} + \sqrt{x + 1} \right)}{\left( \sqrt{1 + x + x^2} + \sqrt{x + 1} \right)2 x^2} \right]\] 

= \[\lim_{x \to 0} \left[ \frac{\left( 1 + x + x^2 \right) - \left( x + 1 \right)}{\left( \sqrt{1 + x + x^2} + \sqrt{x + 1} \right)2 x^2} \right]\]

= \[\lim_{x \to 0} \left[ \frac{x^2}{\left( \sqrt{1 + x + x^2} + \sqrt{x + 1} \right)\left( 2 x^2 \right)} \right]\]

=  \[\frac{1}{\left( \sqrt{1 + 0 + 0} + \sqrt{0 + 1} \right) \times 2}\] 

= \[\frac{1}{2} \times \frac{1}{2}\] 

= \[\frac{1}{4}\] 

  

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.4 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.4 | Q 22 | Page 29

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).

What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`


If f(x) = `{(|x| +  1,x < 0), (0, x = 0),(|x| -1, x > 0):}`

For what value (s) of a does `lim_(x -> a)`  f(x) exists?


\[\lim_{x \to 3} \frac{\sqrt{x + 3} - \sqrt{6}}{x^2 - 9}\] 


\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\] 


\[\lim_{x \to 0} \frac{\sqrt{a + x} - \sqrt{a}}{x\sqrt{a^2 + ax}}\]


\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]


\[\lim_{x \to a} \frac{x - a}{\sqrt{x} - \sqrt{a}}\]


\[\lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}\]


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{x \to 1} \frac{\sqrt{3 + x} - \sqrt{5 - x}}{x^2 - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\] 


\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]


\[\lim_{x \to 0} \frac{9^x - 2 . 6^x + 4^x}{x^2}\] 


\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\] 


\[\lim_{x \to 0} \frac{e^x - 1 + \sin x}{x}\]


\[\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x}\]


\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\] 


\[\lim_{x \to 0} \frac{x\left( 2^x - 1 \right)}{1 - \cos x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{\log \left( 1 + x \right)}\] 


\[\lim_{x \to 0} \frac{\log \left| 1 + x^3 \right|}{\sin^3 x}\] 

 


`\lim_{x \to \pi/2} \frac{a^\cot x - a^\cos x}{\cot x - \cos x}`


\[\lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}}\]


\[\lim_{x \to 5} \frac{e^x - e^5}{x - 5}\]


`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`


`\lim_{x \to 0} \frac{e^\tan x - 1}{\tan x}`


\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\] 


\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\] 


Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]


Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]


Evaluate: `lim_(h -> 0) (sqrt(x + h) - sqrt(x))/h`


Evaluate: `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×