Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}}\]
उत्तर
\[\lim_{x \to 0} \left[ \frac{\sqrt{1 - x^2} - \sqrt{1 + x}}{\sqrt{1 + x^3} - \sqrt{1 + x}} \right]\] It is of the form \[\frac{0}{0}\]
Rationalising the numerator and the denominator:
\[\lim_{x \to 0} \left[ \frac{\left( \sqrt{1 + x^2} - \sqrt{1 + x} \right)}{1} \times \frac{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \times \frac{1}{\left( \sqrt{1 + x^3} - \sqrt{1 + x} \right)} \times \frac{\left( \sqrt{1 + x^3} - \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left[ \left( 1 + x^2 \right) - \left( 1 + x \right) \right]}{\left[ \left( 1 + x^3 \right) - \left( 1 + x \right) \right]} \times \frac{\left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \left( \frac{x^2 - x}{x^3 - x} \right) \times \frac{\left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{x\left( x - 1 \right)}{x\left( x^2 - 1 \right)} \frac{\left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)}{\left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\left( x - 1 \right) \left( \sqrt{1 + x^3} + \sqrt{1 + x} \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( \sqrt{1 + x^2} + \sqrt{1 + x} \right)} \right]\]
\[ = \frac{\left( \sqrt{1 + 0} + \sqrt{1 + 0} \right)}{\left( 0 + 1 \right) \left( \sqrt{1 + 0} + \sqrt{1 + 0} \right)}\]
\[ = \frac{2}{2}\]
\[ = 1\]
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 1)` f(x), where `f(x) = {(x^2 -1, x <= 1), (-x^2 -1, x > 1):}`
Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`
If f(x) = `{(|x| + 1,x < 0), (0, x = 0),(|x| -1, x > 0):}`
For what value (s) of a does `lim_(x -> a)` f(x) exists?
\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x}\]
\[\lim_{x \to 0} \frac{2x}{\sqrt{a + x} - \sqrt{a - x}}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x - 1}\]
\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^2 - 1}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\]
\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\]
\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\]
\[\lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - \left( \sqrt{5} + \sqrt{2} \right)}{x^2 - 10}\]
\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\]
\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]
\[\lim_{x \to 0} \frac{a^x + b^x - 2}{x}\]
\[\lim_{x \to 0} \frac{9^x - 2 . 6^x + 4^x}{x^2}\]
\[\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{x^2}\]
\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]
\[\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x}\]
\[\lim_{x \to a} \frac{\log x - \log a}{x - a}\]
\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\]
`\lim_{x \to \pi/2} \frac{e^\cos x - 1}{\cos x}`
\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\]
\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\]
`\lim_{x \to 0} \frac{e^\tan x - 1}{\tan x}`
\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]
\[\lim_{x \to \pi/2} \frac{2^{- \cos x} - 1}{x\left( x - \frac{\pi}{2} \right)}\]
\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]
\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]
\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]
\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\]
Write the value of \[\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x} .\]
Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]
Evaluate: `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`