Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \pi/2} \frac{2^{- \cos x} - 1}{x\left( x - \frac{\pi}{2} \right)}\]
उत्तर
\[ = \lim_{x \to \frac{\pi}{2}} \left[ \frac{2^{- \sin \left( \frac{\pi}{2} - x \right)} - 1}{x\left( x - \frac{\pi}{2} \right)} \right] \left\{ \because \cos x = \sin \left( \frac{\pi}{2} - x \right) \right\}\]
= `\lim_{x \to \frac{\pi}{2}} \left[ \frac{2^\sin \left( x - \frac{\pi}{2} \right) - 1}{\left( x - \frac{\pi}{2} \right) \times x} \right]`
=` \lim_{x \to \frac{\pi}{2}} \left[ \frac{2^\sin \left( x - \frac{\pi}{2} \right) - 1}{\sin \left( x - \frac{\pi}{2} \right)} \times \frac{\sin \left( x - \frac{\pi}{2} \right)}{\left( x - \frac{\pi}{2} \right)} \times \frac{1}{x} \right]`
\[ = \log_e 2 \times 1 \times \frac{1}{\frac{\pi}{2}}\]
\[ = \frac{2}{\pi} \log_e 2\]
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`
Find `lim_(x -> 1)` f(x), where `f(x) = {(x^2 -1, x <= 1), (-x^2 -1, x > 1):}`
Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`
Find `lim_(x -> 0)` f(x), where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`
If f(x) = `{(|x| + 1,x < 0), (0, x = 0),(|x| -1, x > 0):}`
For what value (s) of a does `lim_(x -> a)` f(x) exists?
if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nx^3 + m, x > 1):}`
For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{2x}\]
\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\]
\[\lim_{x \to 0} \frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}\]
\[\lim_{x \to 2} \frac{\sqrt{x^2 + 1} - \sqrt{5}}{x - 2}\]
\[\lim_{x \to 7} \frac{4 - \sqrt{9 + x}}{1 - \sqrt{8 - x}}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - \sqrt{x + 1}}{2 x^2}\]
\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]
\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\]
\[\lim_{x \to 1} \frac{ x^2 - \sqrt{x}}{\sqrt{x} - 1}\]
\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]
\[\lim_{x \to 0} \frac{a^x + a^{- x} - 2}{x^2}\]
\[\lim_{x \to 0} \frac{8^x - 4^x - 2^x + 1}{x^2}\]
\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{x}\]
\[\lim_{x \to 0} \frac{a^x + b^x + c^x - 3}{x}\]
\[\lim_{x \to 0} \frac{e\sin x - 1}{x}\]
\[\lim_{x \to 0} \frac{e^{2x} - e^x}{\sin 2x}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log \left( a - x \right)}{x}\]
\[\lim_{x \to 0} \frac{x\left( 2^x - 1 \right)}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{e^{x + 2} - e^2}{x}\]
\[\lim_{x \to 0} \frac{e^{3 + x} - \sin x - e^3}{x}\]
\[\lim_{x \to 0} \frac{e^x - x - 1}{2}\]
\[\lim_{x \to 0} \frac{e^{bx} - e^{ax}}{x} \text{ where } 0 < a < b\]
\[\lim_{x \to 0} \frac{a^x - a^{- x}}{x}\]
\[\lim_{x \to 1} \left\{ \frac{x^3 + 2 x^2 + x + 1}{x^2 + 2x + 3} \right\}^\frac{1 - \cos \left( x - 1 \right)}{\left( x - 1 \right)^2}\]
\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\]
Write the value of \[\lim_{n \to \infty} \frac{n! + \left( n + 1 \right)!}{\left( n + 1 \right)! + \left( n + 2 \right)!} .\]
Evaluate: `lim_(x -> 2) (x^2 - 4)/(sqrt(3x - 2) - sqrt(x + 2))`