हिंदी

lim x → 1 x − 1 √ x 2 + 3 − 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to 1} \frac{x - 1}{\sqrt{x^2 + 3 - 2}}\] 

उत्तर

\[\lim_{x \to 1} \left[ \frac{x - 1}{\sqrt{x^2 + 3} - 2} \right]\] It is of the form \[\frac{0}{0}\] 

Rationalising the denominator: 

\[\lim_{x \to 1} \left[ \frac{\left( x - 1 \right)\left( \sqrt{x^2 + 3} + 2 \right)}{\left( \sqrt{x^2 + 3} - 2 \right)\left( \sqrt{x^2 + 3} + 2 \right)} \right]\] 

=  \[\lim_{x \to 1} \left[ \frac{\left( x - 1 \right)\left( \sqrt{x^2 + 3} + 2 \right)}{x^2 + 3 - 4} \right]\] 

=  \[\lim_{x \to 1} \left[ \frac{\left( x - 1 \right)\left( \sqrt{x^2 + 3} + 2 \right)}{\left( x^2 - 1 \right)} \right]\] =  \[\lim_{x \to 1} \left[ \frac{\left( x - 1 \right)\left( \sqrt{x^2 + 3} + 2 \right)}{\left( x - 1 \right)\left( x + 1 \right)} \right]\]

= \[\frac{\sqrt{1 + 3} + 2}{1 + 1}\] 

= \[\frac{4}{2}\] 

= 2 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.4 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.4 | Q 9 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`


Let a1, a2,..., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ).

What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`


\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x}\]


\[\lim_{x \to 0} \frac{\sqrt{a^2 + x^2} - a}{x^2}\] 


\[\lim_{x \to 3} \frac{x - 3}{\sqrt{x - 2} - \sqrt{4 - x}}\] 


\[\lim_{x \to 5} \frac{x - 5}{\sqrt{6x - 5} - \sqrt{4x + 5}}\] 


\[\lim_{x \to 1} \frac{\sqrt{5x - 4} - \sqrt{x}}{x^3 - 1}\] 


\[\lim_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{5 + 2x}}{x - 2}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - \sqrt{x + 1}}{2 x^2}\] 


\[\lim_{x \to 4} \frac{2 - \sqrt{x}}{4 - x}\]


\[\lim_{x \to 0} \frac{\sqrt{2 - x} - \sqrt{2 + x}}{x}\] 


\[\lim_{x \to \sqrt{2}} \frac{\sqrt{3 + 2x} - \left( \sqrt{2} + 1 \right)}{x^2 - 2}\] 


\[\lim_{x \to 0} \frac{\log \left( 1 + x \right)}{3^x - 1}\]


\[\lim_{x \to 0} \frac{5^x + 3^x + 2^x - 3}{x}\]


\[\lim_{x \to \infty} \left( a^{1/x} - 1 \right)x\]


\[\lim_{x \to 0} \frac{a^{mx} - b^{nx}}{\sin kx}\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{\log \left( 1 + x \right)}\] 


\[\lim_{x \to 0} \frac{e^{3x} - e^{2x}}{x}\] 


`\lim_{x \to 0} \frac{e^\tan x - 1}{x}`


`\lim_{x \to 0} \frac{e^x - e^\sin x}{x - \sin x}`


\[\lim_{x \to 0} \frac{a^x - a^{- x}}{x}\]


\[\lim_{x \to 0} \frac{x\left( e^x - 1 \right)}{1 - \cos x}\]


\[\lim_{x \to \pi/2} \frac{2^{- \cos x} - 1}{x\left( x - \frac{\pi}{2} \right)}\]


\[\lim_{x \to a} \left\{ \frac{\sin x}{\sin a} \right\}^\frac{1}{x - a}\]


\[\lim_{x \to 0} \left\{ \frac{e^x + e^{- x} - 2}{x^2} \right\}^{1/ x^2}\]


\[\lim_{x \to 0} \frac{\sin x}{\sqrt{1 + x} - 1} .\] 


Write the value of \[\lim_{x \to - \infty} \left( 3x + \sqrt{9 x^2 - x} \right) .\]


Write the value of \[\lim_{n \to \infty} \frac{n! + \left( n + 1 \right)!}{\left( n + 1 \right)! + \left( n + 2 \right)!} .\]


Write the value of \[\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x} .\] 


Write the value of \[\lim_{n \to \infty} \frac{1 + 2 + 3 + . . . + n}{n^2} .\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×