हिंदी

Evaluate: limx→1x4-xx-1 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`

योग

उत्तर

Given that `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`

= `lim_(x -> 1) (sqrt(x)[(x)^(7/2) - 1])/(sqrt(x) - 1)`

= `lim_(x -> 1) (sqrt(x) ([x^(7/2) - (1)^(7/2)])/(x - 1))/(((x)^(1/2) - (1)^(1/2))/(x - 1))`  .....[Dividing the numerator and denominator of x – 1]

= `lim_(x -> 1) (((x)^(7/2) - (1)^(7/2))/(x - 1))/(((x)^(1/2) - (1)^(1/2))/(x - 1)) xx lim_(x -> 1) sqrt(x)`  .....`[because  lim_(x -> a) f(x) g(x) - lim_(x -> a) f(x) * lim_(x -> a) g(x)]`

= `(7/2 (1)^*7/2 - 1)/(1/2(1)^(1/2 - 1)) xx sqrt(1)`

= `(7/2)/(1/2)`

= 7

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise [पृष्ठ २४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise | Q 7 | पृष्ठ २४०

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×