Advertisements
Advertisements
प्रश्न
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
उत्तर
Given that `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
= `lim_(x -> 1) (sqrt(x)[(x)^(7/2) - 1])/(sqrt(x) - 1)`
= `lim_(x -> 1) (sqrt(x) ([x^(7/2) - (1)^(7/2)])/(x - 1))/(((x)^(1/2) - (1)^(1/2))/(x - 1))` .....[Dividing the numerator and denominator of x – 1]
= `lim_(x -> 1) (((x)^(7/2) - (1)^(7/2))/(x - 1))/(((x)^(1/2) - (1)^(1/2))/(x - 1)) xx lim_(x -> 1) sqrt(x)` .....`[because lim_(x -> a) f(x) g(x) - lim_(x -> a) f(x) * lim_(x -> a) g(x)]`
= `(7/2 (1)^*7/2 - 1)/(1/2(1)^(1/2 - 1)) xx sqrt(1)`
= `(7/2)/(1/2)`
= 7
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit.
`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
`lim_(x -> 0) |x|/x` is equal to ______.
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`
Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec" x - 2)`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists
`lim_(x -> 0) |sinx|/x` is ______.
`lim_(x -> 0) (sin mx cot x/sqrt(3))` = 2, then m = ______.