Advertisements
Advertisements
प्रश्न
Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
उत्तर
We have `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
= `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x)) xx (sqrt(a + 2x) + sqrt(3x))/(sqrt(a + 2x) + sqrt(3x))`
= `lim_(x -> a) (a + 2x - 3x)/((sqrt(3a + x) - 2sqrt(x))(sqrt(a + 2x) + sqrt(3x))`
= `lim_(x -> a) (((a - x))(sqrt(3a + x) + 2sqrt(x)))/((sqrt(a + 2x) + sqrt(3x))(sqrt(3a + x) - 2sqrt(x))(sqrt(3a + x) + 2sqrt(x))`
= `lim_(x -> a) ((a - x) sqrt(3a + x) + 2sqrt(x))/((sqrt(a + 2x) + sqrt(3x))(3a + x - 4x))`
= `(4sqrt(a))/(3 xx 2sqrt(3a))`
= `2/(3sqrt(3))`
= `(2sqrt(3))/9`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`
Evaluate the following limit.
`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Evaluate the following :
`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`
`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.
If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.