हिंदी

Limx→π21-sinxcosx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.

विकल्प

  • 0

  • –1

  • 1

  • Does not exit

MCQ
रिक्त स्थान भरें

उत्तर

`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to 0.

Explanation:

`lim_(x -> pi/2) (1 - sin x)/cosx`

= `lim_(y -> 0) (1 - sin  pi/2 - y)/(cos  pi/2 - y)` taking ` pi/2 - x = y`

= `lim_(y -> 0) (1 - cos y)/siny`

= `lim_(y -> 0) (2 sin^2  t/2)/(2sin  y/2 cos  y/2)`

= `lim_(y -> 0) tan  y/2`

= 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Solved Examples [पृष्ठ २३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Solved Examples | Q 23 | पृष्ठ २३७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x ->0)((secx - 1)/x^2)`


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =


Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


If f(x) = x sinx, then f" `pi/2` is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`


Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`


Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`


Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


cos (x2 + 1)


`(ax + b)/(cx + d)`


`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`


`lim_(x -> pi) (1 - sin  x/2)/(cos  x/2 (cos  x/4 - sin  x/4))`


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.


`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×