Advertisements
Advertisements
प्रश्न
`(ax + b)/(cx + d)`
उत्तर
Let `f(x) = (ax + b)/(cx + d)` ......(i)
⇒ `f(x + Δx) = (a(x + Δx) + b)/(c(x + Δx) + d)` .....(ii)
Subtracting equation (i) from equation (ii) we get
`f(x + Δx) - f(x) = (a(x + Δx) + b)/(c(x + Δx) + d) - (ax + b)/(cx + d)`
Dividing both sides by Δx and take the limit, we get
`lim_(Δx -> 0) (f(x + Δx) - f(x))/(Δx) = lim_(Δx -> 0) ((a(x + Δx) + b)/(c(x + Δx) + d) - (ax + b)/(cx + d))/(Δx)`
⇒ f'(x) = `lim_(Δx -> 0) ((ax + aΔx + b)(cx + d) - (ax + b)(cx + cΔx + d))/([c(x + Δx) + d](cx + d) * Δx)` ......[Using definition of differentiation]
`acx^2 + acΔx * x + bcx + adx + adΔx + bd`
= `lim_(Δx -> 0) (-acx^2 - acΔx * x - adx - bcx - bc * Δx - bd)/((cx + cΔx + d)(cx + d) * Δx)`
= `lim_(Δx -> 0) ((ad - bc)Δx)/((cx + c*Δx + d)(cx + d))`
Taking limit, we have
= `((ad - bc))/((cx + d)(cx + d))`
= `(ad - bc)/(cx + d)^2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit.
`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`
Evaluate the following limit :
`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`
Evaluate the following limit :
`lim_(x ->0)((secx - 1)/x^2)`
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
cos (x2 + 1)
`x^(2/3)`
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
If L = `lim_(x→∞)(x^2sin 1/x - x)/(1 - |x|)`, then value of L is ______.
The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin x^2/4 log(1 + 3x))`, is ______.
`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.