Advertisements
Advertisements
प्रश्न
`x^(2/3)`
उत्तर
Let `f(x) = x^(2/3)` ....(i)
`f(x + Δx) = (x + Δx)^(2/3)` .....(ii)
Subtracting equation (i) from (ii) we get
`f(x + Δx) - f(x) = (x + Δx)^(2/3) - x^(2/3)`
Dividing both sides by Δx and take the limit.
`lim_(Δx -> 0) (f(x + Δx) - f(x))/(Δx) = lim_(Δx -> 0) ((x + Δx)^(2/3) - x^(2/3))/(Δx)`
f'(x) = `lim_(Δx -> 0) (x^(2/3) [1 + (Δx)/x]^(2/3) - x^(2/3))/(Δx)` ........[By definition of differentiation]
= `lim_(Δx -> 0) (x^(2/3) [(1 + (Δx)/x)^(2/3) - 1])/(Δx)`
= `lim_(Δx -> 0) (x^(2/3) [(1 + 2/3 * (Δx)/x + ...) - 1])/(Δx)`
[Expanding by Binomial theorem and rejecting the higher powers of Δx as Δx → 0]
= `lim_(Δx -> 0) (x^(2/3) * 2/3 * (Δx)/x)/(Δx)`
= `2/3 x^(2/3 - 1)`
= `2/3 x^((-1)/3)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Evaluate the following limit :
`lim_(x ->0)((secx - 1)/x^2)`
Evaluate the following limit :
`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`
`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x - 1)`
Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`
Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
x cos x
`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`
`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`
`lim_(x -> pi) sinx/(x - pi)` is equal to ______.
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
`lim_(x -> 0) (sin mx cot x/sqrt(3))` = 2, then m = ______.
`lim_(x -> 3^+) x/([x])` = ______.
`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.