English

Limx→π4sec2x-2tanx-1 is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.

Options

  • 3

  • 1

  • 0

  • 2

MCQ
Fill in the Blanks

Solution

`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to 2.

Explanation:

Given, `lim_(x -> pi/4) (sec^2 x - 2)/(tan x - 1)`

= `lim_(x -> pi/4) (1 + tan^2 x - 2)/(tan x - 1)`

= `lim_(x -> pi/4) (tan^2x - 1)/(tanx - 1)`

= `lim_(x -> pi/4) ((tan x + 1)(tan x - 1))/((tan x - 1))`

= `lim_(x -> pi/4) (tan x + 1)`

= `tan  pi/4 + 1`

= 1 + 1

= 2

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise [Page 243]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise | Q 61 | Page 243

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit :

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`


Evaluate the following :

`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`


`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______ 


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`


`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x  - 1)`


Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`


Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`


`(ax + b)/(cx + d)`


`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.


If L = `lim_(x→∞)(x^2sin  1/x - x)/(1 - |x|)`, then value of L is ______.


If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×