Advertisements
Advertisements
Question
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
Solution
Given, `lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
= `lim_(x -> pi/4) (tanx(tan^2x - 1))/(cos(x + pi/4))`
= `lim_(x -> pi/4) (tanx (tan^2x - 1))/(cos(x + pi/4))`
= `lim_(x -> pi/4) tan x * lim_(x -> pi/4) [(-(1 - tan^2x))/(cos(x + pi/4))]`
= `-1 xx lim_(x -> pi/4) ((1 - tanx)(1 + tanx))/(cos(x + pi/4))`
= `lim_(x -> pi/4) - (1 + tan x) * lim_(x -> pi/4) ((1 - tanx)/(cos(x + pi/4)))`
= `-(1 + 1) * lim_(x -> pi/4) ((cosx - sin x))/(cosx * cos(x + pi/4))`
= `-2 xx lim_(x -> pi/4) (sqrt(2) (1/sqrt(2) cos x - 1/sqrt(2) sinx))/(cos x * cos (x + pi/4))`
= `-2sqrt(2) lim_(x -> pi/4) ([cos pi/4 * cos x - sin pi/4 sin x])/(cosx * cos(x + pi/4))`
= `lim_(x -> pi/4) (-2sqrt(2) * cos(x + pi/4))/(cosx * cos(x + pi/4))`
= `(-2sqrt(2))/(cos pi/4)` ....(Taking limit)
= `(-2sqrt(2))/(1/sqrt(2))`
= `-2 xx 2`
= – 4.
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Evaluate the following limit :
`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`
Evaluate the following limit :
`lim_(x ->0)((secx - 1)/x^2)`
Evaluate the following limit :
`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`
Evaluate the following limit :
`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
`lim_(x -> 0) |x|/x` is equal to ______.
If f(x) = x sinx, then f" `pi/2` is equal to ______.
Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`
Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
`x^(2/3)`
`lim_(x -> pi) sinx/(x - pi)` is equal to ______.
`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.
If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.
The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin x^2/4 log(1 + 3x))`, is ______.