मराठी

Limx→π4tan3x-tanxcos(x+π4) - Mathematics

Advertisements
Advertisements

प्रश्न

`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`

बेरीज

उत्तर

Given, `lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`

= `lim_(x -> pi/4) (tanx(tan^2x - 1))/(cos(x + pi/4))`

= `lim_(x -> pi/4) (tanx (tan^2x - 1))/(cos(x + pi/4))`

= `lim_(x -> pi/4) tan x * lim_(x -> pi/4) [(-(1 - tan^2x))/(cos(x + pi/4))]`

= `-1 xx lim_(x -> pi/4) ((1 - tanx)(1 + tanx))/(cos(x + pi/4))`

= `lim_(x -> pi/4) - (1 + tan x) * lim_(x -> pi/4) ((1 - tanx)/(cos(x + pi/4)))`

= `-(1 + 1) * lim_(x -> pi/4) ((cosx - sin x))/(cosx * cos(x + pi/4))`

= `-2 xx lim_(x -> pi/4) (sqrt(2) (1/sqrt(2) cos x - 1/sqrt(2) sinx))/(cos x * cos (x + pi/4))`

= `-2sqrt(2) lim_(x -> pi/4) ([cos  pi/4 * cos x - sin  pi/4 sin x])/(cosx * cos(x + pi/4))`

= `lim_(x -> pi/4) (-2sqrt(2) * cos(x + pi/4))/(cosx * cos(x + pi/4))`

= `(-2sqrt(2))/(cos  pi/4)`  ....(Taking limit)

= `(-2sqrt(2))/(1/sqrt(2))`

= `-2 xx 2`

= – 4.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise [पृष्ठ २४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise | Q 49 | पृष्ठ २४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate the following limit.

`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`


Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit.

`lim_(x -> 0) (cosec x -  cot x)`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


Evaluate the following :

`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`


Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`


Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.


Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`


Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`


`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> 0) (sin mx cot  x/sqrt(3))` = 2, then m = ______. 


If L = `lim_(x→∞)(x^2sin  1/x - x)/(1 - |x|)`, then value of L is ______.


If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×