Advertisements
Advertisements
प्रश्न
Evaluate the following limit :
`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`
उत्तर
`lim_(x -> pi/4) (tan^2x - cot^2x)/(secx - "cosec"x)`
= `lim_(x -> pi/4) ((sec^2 x - 1) - ("cosec"^2x - 1))/(secx - "cosec"x)`
= `lim_(x -> pi/4) (sec^2 x - "cosec"^2x)/(secx - "cosec"x)`
= `lim_(x -> pi/4) ((secx - "cosec" x)(secx + "cosec"x))/((secx - "cosec"x))`
= `lim_(x -> pi/4) (sec x + "cosec"x) ...[(because x -> pi/4"," therefore secx -> sqrt(2) and "cosec"x -> sqrt(2)),(therefore secx - "cosec"x -> 0 therefore secx - "cosec"x ≠ 0)]`
= `lim_(x -> pi/4) (secx) + lim_(x -> pi/4) ("cosec"x)`
= `sec pi/4 + "cosec" pi/4`
= `sqrt(2) + sqrt(2)`
= `2sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit.
`lim_(x -> 0) (cosec x - cot x)`
Evaluate the following limit :
`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`
Evaluate the following limit :
`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Select the correct answer from the given alternatives.
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate the following :
`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
`lim_(x -> 0) |x|/x` is equal to ______.
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
cos (x2 + 1)
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.
`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.
If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.
`lim_(x -> 0) |sinx|/x` is ______.
If L = `lim_(x→∞)(x^2sin 1/x - x)/(1 - |x|)`, then value of L is ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.
The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin x^2/4 log(1 + 3x))`, is ______.
`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.