Advertisements
Advertisements
प्रश्न
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
पर्याय
0
`1/2`
1
–1
उत्तर
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to `1/2`.
Explanation:
We have `lim_(x -> 0) sinx/(x(1 + cos x))`
= `lim_(x -> 0) (2sin x/2 cos x/2)/(x 2 cos^2 x/2)`
= `1/2 lim_(x -> 0) (tan x/2)/(x/2)`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`
Select the correct answer from the given alternatives.
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`
Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
cos (x2 + 1)
`(ax + b)/(cx + d)`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.
`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.
If L = `lim_(x→∞)(x^2sin 1/x - x)/(1 - |x|)`, then value of L is ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.