हिंदी

Evaluate the following limit : limx→π6[2sin2x+sinx-12sin2x-3sinx+1] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit :

`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`

योग

उत्तर

`lim_(x -> pi/6) (2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)`

= `lim_(x -> pi/6) ((2sinx - 1)(sin x + 1))/((2sin x - 1)(sin x - 1))`

= `lim_(x -> pi/6) (sinx + 1)/(sin x - 1)   ...[(because x -> pi/6","  x ≠ pi/6),(therefore sin x ≠ sin  pi/6 = 1/2),(therefore 2 sin x - 1 ≠ 0)]`

= `(lim_(x -> pi/6) (sin x + 1))/(lim_(x -> pi/6) (sin x - 1))`

= `(sin  pi/6 + 1)/(sin  pi/6 - 1)`

= `(1/2 + 1)/(1/2 - 1)`

= `(1 + 2)/(1 - 2)`

= – 3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Exercise 7.4 [पृष्ठ १४८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
Exercise 7.4 | Q III. (4) | पृष्ठ १४८

संबंधित प्रश्न

Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit.

`lim_(x → 0) x sec x`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =


`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______ 


`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______ 


Evaluate `lim_(x -> pi/2) (secx - tanx)`


Find the derivative of f(x) = `sqrt(sinx)`, by first principle.


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`


Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`


Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`


Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`


cos (x2 + 1)


`x^(2/3)`


`lim_(x -> pi) (1 - sin  x/2)/(cos  x/2 (cos  x/4 - sin  x/4))`


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.


Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×