हिंदी

Evaluate the following limit : limx→π[1-cosx-2sin2x] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit :

`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`

योग

उत्तर

`lim_(x -> pi) (sqrt(1 - cosx) - sqrt(2))/(sin^2 x)`

= `lim_(x -> pi) (sqrt(1 - cosx) - sqrt(2))/(sin^2x) xx  (sqrt(1 - cosx) + sqrt(2))/(sqrt(1 - cosx) + sqrt(2))`

= `lim_(x -> pi) ((1 - cos x) - 2)/(( 1 - cos^2x)(sqrt(1 - cos x) + sqrt(2))`

= `lim_(x -> pi) (-(1 + cos x))/((1 + cos x)(1 - cosx)(sqrt(1 - cosx) + sqrt(2))`

= `lim_(x -> pi) (-1)/((1 - cosx)(sqrt(1 - cosx) + sqrt(2)))  ...[(because x -> pi","  x ≠ pi),(therefore cos x ≠ cos pi = -1),(therefore 1 + cos x ≠ 0)]`

= `(lim_(x -> pi) (-1))/([lim_(x -> pi) (1 - cosx)] xx [lim_(x -> pi) (sqrt(1 - cosx) + sqrt(2))]`

= `(-1)/((1 - cos pi) (sqrt(1 - cos  pi) + sqrt(2))`

=  `(-1)/((1 + 1)(sqrt(1 + 1) + sqrt(2))`

= `(-1)/(4sqrt(2))`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Exercise 7.4 [पृष्ठ १४८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
Exercise 7.4 | Q III. (2) | पृष्ठ १४८

संबंधित प्रश्न

Evaluate the following limit.

`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`


Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit.

`lim_(x -> 0) (cosec x -  cot x)`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`


Evaluate the following :

`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`


`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______ 


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`


Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`


`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


If f(x) = x sinx, then f" `pi/2` is equal to ______.


Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`


Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


x cos x


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.


If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______. 


`lim_(x -> 0) (sin mx cot  x/sqrt(3))` = 2, then m = ______. 


`lim_(x -> 3^+) x/([x])` = ______.


Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.


If L = `lim_(x→∞)(x^2sin  1/x - x)/(1 - |x|)`, then value of L is ______.


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×