हिंदी

Select the correct answer from the given alternatives. limx→5(x+4-33x-11-2) = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct answer from the given alternatives.

`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =

विकल्प

  • `(-2)/9`

  • `2/7`

  • `5/9`

  • `2/9`

MCQ

उत्तर

`2/9`

Explanation;

`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` 

= `lim_(x -> 5)[(sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2) xx (sqrt(x + 4) + 3)/(sqrt(3x - 11) + 2) xx (sqrt(3x - 11) + 2)/(sqrt(x + 4) + 3)]`

= `lim_(x -> 5) ((x - 5) (sqrt(3x - 11) + 2))/((3x - 15)(sqrt(x + 4) + 3)`

= `lim_(x -> 5) (sqrt(3x - 11) + 2)/(3(sqrt(x + 4) + 3))`

= `(sqrt(4) + 2)/(3(sqrt(9) + 3)`

= `2/9`

shaalaa.com
Factorization Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Miscellaneous Exercise 7.1 [पृष्ठ १५८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
Miscellaneous Exercise 7.1 | Q I. (4) | पृष्ठ १५८

संबंधित प्रश्न

Evaluate the following limits: `lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]` 


Evaluate the following limits: `lim_(x -> -2)[(-2x - 4)/(x^3 + 2x^2)]`


Evaluate the following limits: `lim_(u -> 1)[(u^4 - 1)/(u^3 - 1)]`


Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`


Evaluate the following limits: `lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`


Evaluate the following limits: `lim_(y -> 1/2)[(1 - 8y^3)/(y - 4y^3)]`


Evaluate the following limits: `lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`


Evaluate the following Limits: `lim_(x -> 2)[((x - 2))/(2x^2 - 7x + 6)]`


Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`


Evaluate the following limit :

`lim_(x -> -3)[(x + 3)/(x^2 + 4x + 3)]`


Evaluate the following limit :

`lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`


Evaluate the following limit :

`lim_(x -> -2) [(-2x - 4)/(x^3 + 2x^2)]`


Evaluate the following limit :

`lim_(u -> 1) [(u^4 - 1)/(u^3 - 1)]`


Evaluate the following limit :

`lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`


Evaluate the following limit :

`lim_(Deltax -> 0) [((x + Deltax)^2 - 2(x + Deltax) + 1 - (x^2 - 2x + 1))/(Deltax)]`


Evaluate the following limit :

`lim_(y -> 1/2) [(1 - 8y^3)/(y - 4y^3)]`


Evaluate the following limit :

`lim_(x -> 1) [(x - 2)/(x^2 - x) - 1/(x^3 - 3x^2 + 2x)]`


Evaluate the following limit :

`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`


Select the correct answer from the given alternatives.

`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =


Select the correct answer from the given alternatives.

`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` = 


Evaluate the following limits

`lim_(x->-2) [(x^7 + x^5 + 160 )/(x^3 + 8)]`


Evaluate the following limit :

`lim_(x->-2)[(x^7 + x^5 +160)/(x^3+8)]`


Evaluate the following limit:

`lim_(x->-2) [(x^7 + x^5 + 160)/(x^3 + 8)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`


Evaluate the following Limit.

`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`


Evaluate the following limit:

`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`


Evaluate the following limit:

`lim_(x -> 1)[(x^3 - 1) / (x^2 + 5x - 6)]`


Evaluate the following Limit:

`lim_(x->1)[(x^3-1)/(x^2 + 5x - 6)]`


Evaluate the following Limit.

`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`


Evaluate the following limit:

`lim_(x->2) [(z^2 - 5_z + 6)/ (z^2 - 4)]` 


Evaluate the following Limit:

`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`


Evaluate the following limit:

`lim_(x->-2)[(x^7 + x^5 + 160)/(x^3 + 8)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×