Advertisements
Advertisements
प्रश्न
Select the correct answer from the given alternatives.
`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))` =
विकल्प
`(-2)/9`
`2/7`
`5/9`
`2/9`
उत्तर
`2/9`
Explanation;
`lim_(x -> 5) ((sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2))`
= `lim_(x -> 5)[(sqrt(x + 4) - 3)/(sqrt(3x - 11) - 2) xx (sqrt(x + 4) + 3)/(sqrt(3x - 11) + 2) xx (sqrt(3x - 11) + 2)/(sqrt(x + 4) + 3)]`
= `lim_(x -> 5) ((x - 5) (sqrt(3x - 11) + 2))/((3x - 15)(sqrt(x + 4) + 3)`
= `lim_(x -> 5) (sqrt(3x - 11) + 2)/(3(sqrt(x + 4) + 3))`
= `(sqrt(4) + 2)/(3(sqrt(9) + 3)`
= `2/9`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limits: `lim_(x -> - 3)[(x + 3)/(x^2 + 4x + 3)]`
Evaluate the following limits: `lim_(x -> -2)[(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limits: `lim_(u -> 1)[(u^4 - 1)/(u^3 - 1)]`
Evaluate the following limits: `lim_(x -> 3) [1/(x - 3) - (9x)/(x^3 - 27)]`
Evaluate the following limits: `lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`
Evaluate the following limits: `lim_(y -> 1/2)[(1 - 8y^3)/(y - 4y^3)]`
Evaluate the following limits: `lim_("v" -> sqrt(2))[("v"^2 + "v"sqrt(2) - 4)/("v"^2 - 3"v"sqrt(2) + 4)]`
Evaluate the following Limits: `lim_(x -> 2)[((x - 2))/(2x^2 - 7x + 6)]`
Evaluate the following Limits: `lim_(x -> 4)[(3 - sqrt(5 + x))/(1 - sqrt(5 - x))]`
Evaluate the following limit :
`lim_(x -> -3)[(x + 3)/(x^2 + 4x + 3)]`
Evaluate the following limit :
`lim_(y -> 0)[(5y^3 + 8y^2)/(3y^4 - 16y^2)]`
Evaluate the following limit :
`lim_(x -> -2) [(-2x - 4)/(x^3 + 2x^2)]`
Evaluate the following limit :
`lim_(u -> 1) [(u^4 - 1)/(u^3 - 1)]`
Evaluate the following limit :
`lim_(x -> 2)[(x^3 - 4x^2 + 4x)/(x^2 - 1)]`
Evaluate the following limit :
`lim_(Deltax -> 0) [((x + Deltax)^2 - 2(x + Deltax) + 1 - (x^2 - 2x + 1))/(Deltax)]`
Evaluate the following limit :
`lim_(y -> 1/2) [(1 - 8y^3)/(y - 4y^3)]`
Evaluate the following limit :
`lim_(x -> 1) [(x - 2)/(x^2 - x) - 1/(x^3 - 3x^2 + 2x)]`
Evaluate the following limit :
`lim_(x -> 1) [(x^4 - 3x^2 + 2)/(x^3 - 5x^2 + 3x + 1)]`
Select the correct answer from the given alternatives.
`lim_(x -> 2) ((x^4 - 16)/(x^2 - 5x + 6))` =
Select the correct answer from the given alternatives.
`lim_(x -> 3) (1/(x^2 - 11x + 24) + 1/(x^2 - x - 6))` =
Evaluate the following limits
`lim_(x->-2) [(x^7 + x^5 + 160 )/(x^3 + 8)]`
Evaluate the following limit :
`lim_(x->-2)[(x^7 + x^5 +160)/(x^3+8)]`
Evaluate the following limit:
`lim_(x->-2) [(x^7 + x^5 + 160)/(x^3 + 8)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`
Evaluate the following Limit.
`lim_(x->1)[(x^3 -1)/(x^2 +5x -6)]`
Evaluate the following limit:
`lim_(z->2)[(z^2 - 5z + 6)/(z^2 - 4)]`
Evaluate the following limit:
`lim_(x -> 1)[(x^3 - 1) / (x^2 + 5x - 6)]`
Evaluate the following Limit:
`lim_(x->1)[(x^3-1)/(x^2 + 5x - 6)]`
Evaluate the following Limit.
`lim_(x -> 1)[(x^3 - 1)/(x^2 + 5x - 6)]`
Evaluate the following limit:
`lim_(x->2) [(z^2 - 5_z + 6)/ (z^2 - 4)]`
Evaluate the following Limit:
`lim_(x->1)[(x^3-1)/(x^2+5x-6)]`
Evaluate the following limit:
`lim_(x->-2)[(x^7 + x^5 + 160)/(x^3 + 8)]`