Advertisements
Advertisements
प्रश्न
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
उत्तर
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
= `lim_(x -> 7)[((x^(1/3) - 7^(1/3))(x^(1/3) + 7^(1/3)))/(x - 7)]`
= `lim_(x -> 7)[(x^(2/3) - 7^(2/3))/(x - 7)] ...[∵ (a – b)(a + b) = a^2 – b^2]`
= `2/3(7)^(2/3 - 1) ...[ therefore lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`
= `2/3(7)^(-1/3)`
= `2/3 × 1/7^(1/3)`
= `2/(3 (root(3)(7))`
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to a} \frac{\sqrt{x} + \sqrt{a}}{x + a}\]
\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\]
\[\lim_{x \to 1/4} \frac{4x - 1}{2\sqrt{x} - 1}\]
\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\]
\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\]
\[\lim_{x \to 0} \frac{\tan^2 3x}{x^2}\]
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\]
\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]
\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
\[\lim_{x \to \infty} \frac{\sin x}{x} .\]
Evaluate the following limit:
`lim_(x -> 3) [sqrt(x + 6)/x]`
Evaluate the following limits: `lim_(x -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`
Evaluate the Following limit:
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limit:
`lim_(x->7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`