Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\]
उत्तर
\[\lim_{x \to 0} \left[ \frac{\cos \left( 2x \right) - 1}{\cos x - 1} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{1 - 2 \sin^2 x - 1}{1 - 2 \sin^2 \left( \frac{x}{2} \right) - 1} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\sin^2 x}{\sin^2 \left( \frac{x}{2} \right)} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{\sin^2 x}{x^2} \times \frac{x^2}{\frac{\sin^2 \left( \frac{x}{2} \right)}{\frac{x^2}{4}} \times \frac{x^2}{4}} \right]\]
\[ = \lim_{x \to 0} \left[ \left( \frac{\sin x}{x} \right)^2 \times \frac{1}{\left( \frac{\sin \left( \frac{x}{2} \right)}{\frac{x}{2}} \right)^2} \times 4 \right]\]
\[ = 4\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\]
\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]
\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\]
\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\]
\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\]
\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x - a}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a.
\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\]
\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\]
\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\]
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\]
\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\]
\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\]
\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]
Evaluate the following limits:
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\]
\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\]
\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
\[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals
\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]
\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
The value of \[\lim_{x \to \pi/2} \left( \sec x - \tan x \right)\]is
The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is
Evaluate the following Limits: `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`
Evaluate the following limit.
`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`
Evaluate the following limit:
`\underset{x->3}{lim}[sqrt(x +6)/(x)]`