Advertisements
Advertisements
प्रश्न
\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]
पर्याय
−1/12
−4/3
−16/3
−1/48
उत्तर
−1/48
\[\lim_{h \to 0} \left[ \frac{1}{h \sqrt[3]{8 + h}} - \frac{1}{2h} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{1}{h}\left\{ \frac{1}{\sqrt[3]{8 + h}} - \frac{1}{2} \right\} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{1}{h}\left\{ \frac{2 - \left( 8 + h \right)^{1/3}}{2 \times \sqrt[3]{8 + h}} \right\} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{1}{h}\left\{ \frac{8^{1/3} - \left( 8 + h \right)^{1/3}}{2 \sqrt[3]{8 + h}} \right\} \right] \left[ A^3 - B^3 = \left( A - B \right)\left( A^2 + AB + B^2 \right) or A - B = \frac{A^3 - B^3}{A^2 + AB + B^2} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{8 - \left( 8 + h \right)}{h\left\{ 2\sqrt[3]{8 + h} \right\}\left\{ 4 + 2 \left( 8 + h \right)^{1/3} + \left( 8 + h \right)^{2/3} \right\}} \right]\]
\[ = \left[ \frac{- 1}{2 \times \sqrt[3]{8}\left\{ 4 + 2 \times 8^{1/3} + 8^{2/3} \right\}} \right]\]
\[ = \frac{- 1}{2 \times 2\left( 4 + 4 + 4 \right)}\]
\[ = \frac{- 1}{48}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]
\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]
\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\]
\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\]
\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\]
\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\]
\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\]
\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\]
\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\]
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\]
\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\]
\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\]
\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\]
\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\]
\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\]
\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\sin 2x}{\cos x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\]
The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\] is
\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\] is equal to
If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\] where denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]
Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`
`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`