Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
उत्तर
\[\lim_{x \to 0} \left[ \frac{x \cos x + 2 \sin x}{x^2 + \tan x} \right]\]
Dividing the numerator and the denominator by x, we get:
\[\lim_{x \to 0} \left[ \frac{\cos x + \frac{2\sin x}{x}}{x + \frac{\tan x}{x}} \right]\]
\[ = \frac{\cos0 + 2 \times 1}{0 + 1} \left[ \because \lim_{x \to 0} \left( \frac{\sin x}{x} \right) = 1, \lim_{x \to 0} \left( \frac{\tan x}{x} \right) = 1 \right]\]
\[ = \frac{3}{1}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to a} \frac{\sqrt{x} + \sqrt{a}}{x + a}\]
\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]
\[\lim_{x \to 1} \frac{\sqrt{x^2 - 1} + \sqrt{x - 1}}{\sqrt{x^2 - 1}}, x > 1\]
\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\]
Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\]
\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\]
\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\]
\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\]
\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\]
\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]
\[\lim_{x \to \frac{\pi}{8}} \frac{\cot 4x - \cos 4x}{\left( \pi - 8x \right)^3}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]
\[\lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin \pi \left( x - 1 \right)}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
\[\lim_{x \to \frac{3\pi}{2}} \frac{1 + {cosec}^3 x}{\cot^2 x}\]
\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\]
\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
\[\lim_{x \to } \frac{1 - \cos 2x}{x} is\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\]
The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is
\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`
Evaluate the following limit :
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit:
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit.
`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`