Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
पर्याय
\[\frac{1}{\sqrt{2}}\]
\[\frac{1}{2}\]
\[\frac{1}{2\sqrt{2}}\]
1
उत्तर
1/2
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2}\cos x - 1}{\cot x - 1}\]
\[\text{ Rationalising the numerator, we get }: \]
\[ = \lim_{x \to \frac{\pi}{4}} \left( \frac{\sqrt{2} \cos x - 1}{\cot x - 1} \right) \times \left( \frac{\sqrt{2} \cos x + 1}{\sqrt{2} \cos x + 1} \right)\]
\[ = \lim_{x \to \frac{\pi}{4}} \frac{\left( 2 \cos^2 x - 1 \right)}{\left( \cos x - \sin x \right)} \times \frac{\sin x}{\left( \sqrt{2}\cos x + 1 \right)}\]
\[ = \lim_{x \to \frac{\pi}{4}} \frac{\left( \cos^2 x - \sin^2 x \right)}{\left( \cos x - \sin x \right)} \times \frac{\sin x}{\left( \sqrt{2}\cos x + 1 \right)}\]
\[ = \lim_{x \to \frac{\pi}{4}} \frac{\left( \cos x + \sin x \right) \sin x}{\left( \sqrt{2}\cos x + 1 \right)}\]
\[ = \frac{\left( \cos \frac{\pi}{4} + \sin \frac{\pi}{4} \right) \sin \frac{\pi}{4}}{\left( \sqrt{2}\cos \frac{\pi}{4} + 1 \right)}\]
\[ = \frac{\left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)\left( \frac{1}{\sqrt{2}} \right)}{\sqrt{2} . \frac{1}{\sqrt{2}} + 1}\]
\[ = \frac{\left( \frac{2}{\sqrt{2}} \right) \times \frac{1}{\sqrt{2}}}{2}\]
\[ = \frac{1}{2}\]
The correct answer is B.
APPEARS IN
संबंधित प्रश्न
Suppose f(x) = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}` and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]
\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]
\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\]
\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\]
\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a.
\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]
\[\lim_{n \to \infty} \left[ \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!} \right]\]
\[\lim_{x \to 0} \frac{\sin 3x}{5x}\]
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\]
\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\]
\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\]
\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\]
\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\]
\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\]
\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x}{3 \tan^2 x}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
Evaluate the following limit:
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}},\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}\] is equal to
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
Evaluate the following limit:
`lim_(x -> 3) [sqrt(x + 6)/x]`
Evaluate the following limits: if `lim_(x -> 5)[(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.
Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`
If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.
Evaluate the Following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`