Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]
उत्तर
\[\lim_{x \to \frac{\pi}{2}} \frac{\cos^2 x}{1 - \sin x}\]
\[ = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin^2 x}{1 - \sin x} \binom{ \because \cos^2 x = 1 - \sin^2 x }{ a^2 - b^2 = \left( a - b \right) \left( a + b \right)}\]
\[ = \lim_{x \to \frac{\pi}{2}} \frac{\left( 1 - \sin x \right) \left( 1 + \sin x \right)}{\left( 1 - \sin x \right)}\]
\[ = \lim_{x \to \frac{\pi}{2}} \left( 1 + \sin x \right)\]
\[ \Rightarrow 1 + 1 = 2\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\]
\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]
\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\]
\[\lim_{x \to 2} \left( \frac{x}{x - 2} - \frac{4}{x^2 - 2x} \right)\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\]
\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]
\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\]
\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\]
\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\]
\[\lim_{x \to 0} \frac{\sin 3x}{5x}\]
\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\]
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\]
\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\]
\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\]
\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\]
\[\lim_{x \to 0} \frac{1 - \cos 5x}{1 - \cos 6x}\]
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \sin 2x}{1 + \cos 4x}\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[\lim_{x \to \frac{3\pi}{2}} \frac{1 + {cosec}^3 x}{\cot^2 x}\]
\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\]
\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\] is equal at
If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\] equals
The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\]
\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\] is equal to
If `f(x) = {{:(x + 2",", x ≤ - 1),(cx^2",", x > -1):}`, find 'c' if `lim_(x -> -1) f(x)` exists
Number of values of x where the function
f(x) = `{{:((tanxlog(x - 2))/(x^2 - 4x + 3); x∈(2, 4) - {3, π}),(1/6tanx; x = 3"," π):}`
is discontinuous, is ______.
Evaluate the following limit :
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`