मराठी

Evaluate the Following Limit: Lim X → π 3 √ 1 − Cos 6 X √ 2 ( π 3 − X ) - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit:

\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]

उत्तर

\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]

\[ = \lim_{x \to \frac{\pi}{3}} \frac{\sqrt{2 \sin^2 3x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)} \left( 1 - \cos2\theta = 2 \sin^2 \theta \right)\]

\[ = \lim_{x \to \frac{\pi}{3}} \frac{\sqrt{2}\sin3x}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]

\[ = \lim_{x \to \frac{\pi}{3}} \frac{\sin3x}{\left( \frac{\pi}{3} - x \right)}\]

\[= \lim_{h \to 0} \frac{\sin3\left( \frac{\pi}{3} + h \right)}{\frac{\pi}{3} - \left( \frac{\pi}{3} + h \right)} \left( Put x = \frac{\pi}{3} + h \right)\]
\[ = \lim_{h \to 0} \frac{\sin\left( \pi + 3h \right)}{- h}\]
\[ = \lim_{h \to 0} \frac{- \sin3h}{- h} \left[ \sin\left( \pi + \theta \right) = - \sin\theta \right]\]
\[ = 3 \times \lim_{h \to 0} \frac{\sin3h}{3h}\]
\[ = 3 \times 1 \left( \lim_\theta \to 0 \frac{\sin\theta}{\theta} = 1 \right)\]
\[ = 3\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.8 [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.8 | Q 4 | पृष्ठ ६२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\] 


\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\] 


\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\] 


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\] 


\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\] 


If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a


\[\lim_{x \to \infty} \frac{\left( 3x - 1 \right) \left( 4x - 2 \right)}{\left( x + 8 \right) \left( x - 1 \right)}\] 


\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\] 


\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\] 


\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\] 


\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\] 


\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\] 


\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\] 


\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]


\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]


Evaluate the following limit: 

\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to a} \frac{\sin \sqrt{x} - \sin \sqrt{a}}{x - a}\] 


\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]


\[\lim_{x \to 1} \frac{1 - \frac{1}{x}}{\sin \pi \left( x - 1 \right)}\]


\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]


\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\] 


\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]


\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]


\[\lim_{x \to \frac{3\pi}{2}} \frac{1 + {cosec}^3 x}{\cot^2 x}\]


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]


Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\] 


Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]


Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\] 


\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\] 


\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]


The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is 


\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]


`1/(ax^2 + bx + c)`


If f(x) = `{{:(1 if x  "is rational"),(-1 if x  "is rational"):}` is continuous on ______.


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit:

`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×