मराठी

Lim X → a Sin √ X − Sin √ a X − a - Mathematics

Advertisements
Advertisements

प्रश्न

limxasinxsinaxa 

उत्तर

limxasinxsinaxa
=limxa2cos(x+a2)sin(xa2)(x+a)(xa)
=limxa2cos(x+a2)x+a×sin(xa2)2(xa2)
=1a+acos(2a2)
12acosa

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.8 [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.8 | Q 17 | पृष्ठ ६२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Show that limx0x|x| does not exist.


limx09 


limx1x3+1x+1 


limx3x23x2+33x12


limx0(a+x)2a2x 


limx11x1/31x2/3 


limx2[1x22(2x3)x33x2+2x] 


limx27(x1/3+3)(x1/33)x27 


If limx3xn3nx3=108,  find the value of n


limx5x369+4x6


limxx2+cxx 


limx[x4+7x3+46x+ax4+6] where a is a non-zero real number. 


limx0[x2sinx2] 


limx0tanmxtannx 


limx07xcosx3sinx4x+tanx 


limx0cosaxcosbxcoscxcosdx 


limθ0sin3θtan2θ 


limx02sinxsin2xx3 


limx0xcosx+sinxx2+tanx 


Evaluate the following limits: 

limx02sinxsin2xx3 

 


limx0(cosecxcotx)


limxπ41sin2x1+cos4x 


limxπ1+cosxtan2x 


limn(1+xn)n


Write the value of limx0[x].

 

limx{3x2+14x21}x31+x


limx01cos2xx.


Write the value of limx0[x].


If f(x)=xsin(1/x),x0,  then limx0f(x)= 


limh0{1h8+h312h}=


limx3r=1nxrr=1n3rx3is real to


limn12+34+56+....+(2n1)2nn2+1+n21 is equal to 


limxπ/442(cosx+sinx)51sin2x is equal to 


The value of limxπ/2(secxtanx)is 


limx|x|x  is equal to 


Evaluate the following Limit:

limx0(1+x)n-1x


Evaluate: limx1(1+x)6-1(1+x)2-1


Evaluate the following limits: limx3[x+6x]


Evaluate the following limits: limx5[x3-125x5-3125]


Evaluate the following limit:

limx7[(x3-73)(x3+73)x-7]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.