Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\] then \[\lim_{x \to 0} f\left( x \right) =\]
पर्याय
(a) 1
(b) 0
(c) −1
(d) does not exist
उत्तर
(b) 0
\[\lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} x \sin \frac{1}{x}, x \neq 0\]
\[\text{ LHL at } x = 0: \]
\[ \lim_{x \to 0^-} f\left( x \right) = \lim_{h \to 0} f\left( 0 - h \right)\]
\[ \Rightarrow \lim_{h \to 0} - h \sin \left( \frac{1}{- h} \right)\]
\[ = 0\]
\[\text{ RHL } at x = 0: \]
\[ \lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} f\left( 0 + h \right)\]
\[ \Rightarrow \lim_{h \to 0} h \sin \left( \frac{1}{h} \right)\]
\[ = 0\]
\[ \lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^+} f\left( x \right)\]
\[\text{ Hence }, \lim_{x \to 0} f\left( x \right) \text{`exists and is equal to 0 } .\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\]
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to a} \frac{\sqrt{x} + \sqrt{a}}{x + a}\]
\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\]
\[\lim_{x \to \sqrt{3}} \frac{x^2 - 3}{x^2 + 3 \sqrt{3}x - 12}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\]
\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\]
\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\]
Show that \[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\]
\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\]
\[\lim_{x \to 0} \frac{\sin \left( a + x \right) + \sin \left( a - x \right) - 2 \sin a}{x \sin x}\]
\[\lim_{x \to \pi} \frac{\sin x}{\pi - x}\]
\[\lim_{x \to a} \frac{\sin \sqrt{x} - \sin \sqrt{a}}{x - a}\]
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\]
\[\lim_{x \to \frac{3\pi}{2}} \frac{1 + {cosec}^3 x}{\cot^2 x}\]
\[\lim_{x \to 0} \frac{\log \left( 3 + x \right) - \log \left( 3 - x \right)}{x}\]
Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\]
\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal
\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]
Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`
If f(x) = `{{:(1 if x "is rational"),(-1 if x "is rational"):}` is continuous on ______.
Evaluate the Following limit:
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the following limit:
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limit:
`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`