Advertisements
Advertisements
प्रश्न
Show that \[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\]
उत्तर
\[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\]
\[\text{ LHS }: \]
\[ \lim_{x \to \infty} \left( \left( \sqrt{x^2 + x + 1} - x \right) \right)\]
\[\text{ Rationalising the numerator }: \]
\[ \lim_{x \to \infty} \left[ \frac{\left( \sqrt{x^2 + x + 1} - x \right) \left( \sqrt{x^2 + x + 1} + x \right)}{\left( \sqrt{x^2 + x + 1} + x \right)} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{\left( x^2 + x + 1 \right) - x^2}{\left( \sqrt{x^2 + x + 1} + x \right)} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{x + 1}{\left( \sqrt{x^2 + x + 1} + x \right)} \right]\]
\[\text{ Dividing the numerator and the denominator by x }: \]
\[ \lim_{x \to \infty} \left[ \frac{1 + \frac{1}{x}}{\frac{\sqrt{x^2 + x + 1}}{x} + 1} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{1 + \frac{1}{x}}{\sqrt{\frac{x^2 + x + 1}{x^2}} + 1} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{1 + \frac{1}{x}}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + 1} \right]\]
\[\text{ When x } \to \infty , \text{ then } \frac{1}{x} \to 0 . \]
\[\frac{1}{\sqrt{1} + 1}\]
\[ = \frac{1}{2}\]
\[RHS: \]
\[ \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right) \left[ \text{ from } \infty - \infty \right]\]
Rationalising the numerator:
\[\lim_{x \to \infty} \left[ \frac{\left( \sqrt{x^2 + 1} - x \right) \left( \sqrt{x^2 + 1} + x \right)}{\left( \sqrt{x^2 + 1} + x \right)} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{x^2 + 1 - x^2}{\left( \sqrt{x^2 + 1} + x \right)} \right]\]
\[ = \frac{1}{\infty}\]
\[ = 0\]
\[ \therefore \lim_{x \to \infty} \left[ \sqrt{x^2 + x + 1} - x \right] \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\]
APPEARS IN
संबंधित प्रश्न
Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.
\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\]
\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\]
\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\]
\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]
\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\]
If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a.
\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\]
\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\]
\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\]
\[\lim_{x \to 0} \frac{x^2}{\sin x^2}\]
\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\]
\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\]
\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\]
\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\]
\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\]
\[\lim_{x \to 0} \left( \cos x \right)^{1/\sin x}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
\[\lim_{x \to \infty} \frac{\sin x}{x} .\]
\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]
If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal
\[\lim_{x \to \pi/3} \frac{\sin \left( \frac{\pi}{3} - x \right)}{2 \cos x - 1}\] is equal to
\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to
\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to
\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to
The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is
Evaluate the following Limits: `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`
`1/(ax^2 + bx + c)`
Evaluate the following limit :
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limit:
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limit:
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit:
`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`