Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to
पर्याय
\[\frac{1}{16}\]
\[- \frac{1}{16}\]
\[\frac{1}{32}\]
\[- \frac{1}{32}\]
उत्तर
\[\frac{1}{32}\]
\[\lim_{x \to 0} \frac{8}{x^8} \left[ 1 - \cos \frac{x^2}{2} - \cos\frac{x^2}{4} + \cos\frac{x^2}{2}\cos \frac{x^2}{4} \right]\]
\[ = \lim_{x \to 0} \frac{8}{x^8} \left[ \left( 1 - \cos \frac{x^2}{4} \right) - \cos \frac{x^2}{2}\left( 1 - \cos\frac{x^2}{4} \right) \right]\]
\[ = \lim_{x \to 0} \frac{8}{x^8} \left[ \left( 1 - \cos\frac{x^2}{4} \right) \left( 1 - \cos\frac{x^2}{2} \right) \right]\]
\[ = \lim_{x \to 0} \frac{8}{x^8} \left[ \left( 2 \sin^2 \frac{x^2}{8} \right) \left( 2 \sin^2 \frac{x^2}{4} \right) \right]\]
\[ = \lim_{x \to 0} 4 \times 8 \frac{\left( \sin^2 \frac{x^2}{8} \right)}{\left( 64 \times \frac{x^4}{64} \right)} \frac{\left( \sin^2 \frac{x^2}{4} \right)}{16\left( \frac{x^4}{16} \right)}\]
\[ = \frac{32}{64 \times 16}\]
\[ = \frac{1}{32}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x - a}\]
\[\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}\]
If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a.
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\]
Show that \[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\]
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_{x \to 0} \frac{\sin x^n}{x^n}\]
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\]
\[\lim_{x \to 0} \frac{\tan x - \sin x}{\sin 3x - 3 \sin x}\]
\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\]
\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
Evaluate the following limit:
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]
\[\lim_{n \to \infty} 2^{n - 1} \sin \left( \frac{a}{2^n} \right)\]
\[\lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{cosec x - 2}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
Write the value of \[\lim_{x \to \infty} \frac{\sin x}{x} .\]
Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]
\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]
The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is
The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is
Evaluate the following limit:
`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Evaluate the following limit:
`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`
Evaluate the following limit:
`lim_(x->3)[(sqrt(x+6))/x]`