मराठी

Limx→∞x2+a2−x2+b2x2+c2−x2+d2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\] 

बेरीज

उत्तर

\[\lim_{x \to \infty} \left[ \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}} \right]\]
\[\text{ Rationalising the numerator and the denominator }:\]
\[ \lim_{x \to \infty} \left[ \frac{\left( \sqrt{x^2 + a^2} - \sqrt{x^2 + b^2} \right)}{\left( \sqrt{x^2 + c^2} - \sqrt{x^2 + d^2} \right)} \times \frac{\left( \sqrt{x^2 + c^2} + \sqrt{x^2 + d^2} \right)}{\left( \sqrt{x^2 + c^2} + \sqrt{x^2 + d^2} \right)} \times \frac{\left( \sqrt{x^2 + a^2} + \sqrt{x^2 + b^2} \right)}{\left( \sqrt{x^2 + a^2} + \sqrt{x^2 + b^2} \right)} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{\left( \sqrt{x^2 + a^2} - \sqrt{x^2 + b^2} \right) \left( \sqrt{x^2 + a^2} + \sqrt{x^2 + b^2} \right) \left( \sqrt{x^2 + c^2} + \sqrt{x^2 + d^2} \right)}{\left( \sqrt{x^2 + c^2} - \sqrt{x^2 + d^2} \right) \left( \sqrt{x^2 + c^2} + \sqrt{x^2 + d^2} \right) \left( \sqrt{x^2 + a^2} + \sqrt{x^2 + b^2} \right)} \right]\]
\[ = \lim_{x \to \infty} \frac{\left( x^2 + a^2 \right) - \left( x^2 + b^2 \right)}{\left( x^2 + c^2 \right) - \left( x^2 + d^2 \right)} \times \left( \frac{\sqrt{x^2 + c^2} + \sqrt{x^2 + d^2}}{\sqrt{x^2 + a^2} + \sqrt{x^2 + b^2}} \right)\]
\[ {= \lim}_{x \to \infty} \left( \frac{a^2 - b^2}{c^2 - d^2} \right) \left( \frac{\sqrt{x^2 + c^2} + \sqrt{x^2 + d^2}}{\sqrt{x^2 + a^2} + \sqrt{x^2 + b^2}} \right)\]
\[\text{ Dividing the numerator and the denominator byx }:\]
\[ \lim_{x \to \infty} \left( \frac{a^2 - b^2}{c^2 - d^2} \right) \left( \frac{\sqrt{1 + \frac{c^2}{x^2}} + \sqrt{1 + \frac{d^2}{x^2}}}{\sqrt{1 + \frac{1}{x^2}} + \sqrt{1 + \frac{b^2}{x^2}}} \right)\]
\[As x \to \infty , \frac{1}{x}, \frac{1}{x^2} \to 0\]
\[ = \left( \frac{a^2 - b^2}{c^2 - d^2} \right) \left( \frac{\sqrt{1} + \sqrt{1}}{\sqrt{1} + \sqrt{1}} \right)\]
\[ = \frac{a^2 - b^2}{c^2 - d^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.6 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.6 | Q 10 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]


\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\] 


\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\] 


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\] 


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\] 


\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\] 


\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\] 


\[\lim_{x \to 1} \frac{\sqrt{x^2 - 1} + \sqrt{x - 1}}{\sqrt{x^2 - 1}}, x > 1\] 


Evaluate the following limit:

\[\lim_{x \to 1} \frac{x^7 - 2 x^5 + 1}{x^3 - 3 x^2 + 2}\] 


\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a


\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\] 


\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\] 


\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\] 


\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\] 


\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\] 


\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]


\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\sin 2x}{\cos x}\] 


\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}},\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\left( \frac{\pi}{2} - x \right) \sin x - 2 \cos x}{\left( \frac{\pi}{2} - x \right) + \cot x}\]


\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]


\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\] 


\[\lim_{x \to 0} \frac{\sin 2x}{x}\] 


\[\lim_{x \to 3} \frac{\sum^n_{r = 1} x^r - \sum^n_{r = 1} 3^r}{x - 3}\]is real to


If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\]  equals 


The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\] 


\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to 


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`


Evaluate the following Limits: `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`


Evaluate the following limits: `lim_(x ->3) [sqrt(x + 6)/x]`


Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit.

`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`


Evaluate the Following limit:

`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×