Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\]
उत्तर
\[\lim_{x \to \infty} \left( \sqrt{x^2 + cx - x} \right)\]
It is of the form ∞ - ∞.
Rationalising the numerator:
\[\lim_{x \to \infty} \left( \sqrt{x^2 + cx} - x \right) \frac{\left( \sqrt{x^2 + cx} + x \right)}{\left( \sqrt{x^2 + cx} + x \right)}\]
\[ = \lim_{x \to \infty} \left( \frac{x^2 + cx - x^2}{\sqrt{x^2 + cx} + x} \right)\]
\[\text{ Dividing the numerator and the denomiator by }x: \]
\[ \lim_{x \to \infty} \left[ \frac{\frac{cx}{x}}{\frac{\sqrt{x^2 + cx} + x}{x}} \right]\]
\[ = \lim_{x \to \infty} \left[ \frac{c}{\sqrt{1 + \frac{c}{x}} + 1} \right]\]
\[\text{ When } x \to \infty , \text{ then } \frac{1}{x} \to 0 . \]
\[ \Rightarrow \frac{c}{\sqrt{1} + 1}\]
\[ = \frac{c}{2}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 0} 9\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\]
\[\lim_{x \to 1} \frac{x^4 - 3 x^3 + 2}{x^3 - 5 x^2 + 3x + 1}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a.
\[\lim_{x \to \infty} \sqrt{x + 1} - \sqrt{x}\]
\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\]
\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\]
\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\]
\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\sin \left( a + x \right) + \sin \left( a - x \right) - 2 \sin a}{x \sin x}\]
\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\]
\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\]
\[\lim_{n \to \infty} 2^{n - 1} \sin \left( \frac{a}{2^n} \right)\]
\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]
\[\lim_{x \to 0} \frac{\sin 2x}{x}\]
If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\] then \[\lim_{x \to 0} f\left( x \right) =\]
\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
\[\lim 2_{h \to 0} \left\{ \frac{\sqrt{3} \sin \left( \pi/6 + h \right) - \cos \left( \pi/6 + h \right)}{\sqrt{3} h \left( \sqrt{3} \cos h - \sin h \right)} \right\}\]
If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is
\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\] is equal to
Evaluate the following Limit:
`lim_(x -> 0) ((1 + x)^"n" - 1)/x`
Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`
Evaluate the following limit :
`lim_(x->5)[(x^3-125)/(x^5-3125)]`