Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\]
उत्तर
\[\lim_{x \to 0} \left[ \frac{2 \sin x° - \sin \left( 2x° \right)}{x^3} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin \left( \frac{\pi x}{180} \right) - \sin \left( \frac{2\pi x}{180} \right)}{x^3} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin \left( \frac{\pi x}{180} \right) - 2 \sin \left( \frac{\pi x}{180} \right) \times \cos\left( \frac{\pi x}{180} \right)}{x^3} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin \left( \frac{\pi x}{180} \right) \left[ 1 - \cos \left( \frac{\pi x}{180} \right) \right]}{x^3} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{2 \sin \left( \frac{\pi x}{180} \right) \times 2 \sin^2 \left( \frac{\pi x}{360} \right)}{x \times x^2} \right]\]
\[ = \lim_{x \to 0} \left[ \frac{4 \sin \left[ \frac{\pi x}{180} \right] \times \sin^2 \left[ \frac{\pi x}{360} \right]}{\frac{\pi x}{180} \times \frac{\pi x}{360} \times \frac{\pi x}{360}} \times \frac{\pi}{180} \times \left( \frac{\pi}{360} \right)^2 \right]\]
\[ = 4 \lim_{x \to 0} \left[ \frac{\sin \left( \frac{\pi x}{180} \right)}{\frac{\pi x}{180}} \times \frac{\sin \left( \frac{\pi x}{360} \right) \times \sin \left( \frac{\pi x}{360} \right)}{\frac{\pi x}{360} \times \frac{\pi x}{360}} \times \frac{\pi^3}{180 \times {360}^2} \right]\]
\[ = 4 \times 1 \times 1 \times 1 \times \frac{\pi^3}{180 \times 360 \times 360}\]
\[ = \left( \frac{\pi}{180} \right)^3\]
APPEARS IN
संबंधित प्रश्न
Suppose f(x) = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}` and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?
\[\lim_{x \to - 1} \frac{x^3 - 3x + 1}{x - 1}\]
\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\]
\[\lim_{x \to 1/4} \frac{4x - 1}{2\sqrt{x} - 1}\]
\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]
\[\lim_{x \to 1} \frac{\sqrt{x^2 - 1} + \sqrt{x - 1}}{\sqrt{x^2 - 1}}, x > 1\]
\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\]
\[\lim_{x \to \infty} \frac{\left( 3x - 1 \right) \left( 4x - 2 \right)}{\left( x + 8 \right) \left( x - 1 \right)}\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{n \to \infty} \left[ \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + . . . + \frac{1}{3^n} \right]\]
Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\]
Evaluate: \[\lim_{n \to \infty} \frac{1 . 2 + 2 . 3 + 3 . 4 + . . . + n\left( n + 1 \right)}{n^3}\]
\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\]
\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\]
\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\]
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\]
\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\]
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\]
\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]
\[\lim_{x \to \frac{\pi}{4}} \frac{{cosec}^2 x - 2}{\cot x - 1}\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
Write the value of \[\lim_{x \to \infty} \frac{\sin x}{x} .\]
\[\lim_{x \to 0} \frac{\sin 2x}{x}\]
\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]
\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\]
\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to
\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to
\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to
The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is
Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`
`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?
Which of the following function is not continuous at x = 0?
If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.
If f(x) = `{{:(1 if x "is rational"),(-1 if x "is rational"):}` is continuous on ______.
Evaluate the following limit :
`lim_(x->3)[sqrt(x+6)/x]`