Advertisements
Advertisements
प्रश्न
\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\]
उत्तर
\[\lim_{x \to 1} \left[ \frac{\left( x^3 - 1 \right) - x\left( x^2 + x - 2 \right)}{\left( x^2 + x - 2 \right)\left( x^3 - 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{\left( x^3 - 1 \right) - x^3 - x^2 + 2x}{\left( x^2 + x - 2 \right)\left( x^3 - 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{- x^2 + 2x - 1}{\left( x^2 + x - 2 \right)\left( x - 1 \right)\left( x^2 + x + 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{- \left( x^2 - 2x + 1 \right)}{\left( x^2 + x - 2 \right)\left( x - 1 \right)\left( x^2 + x + 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{- \left( x - 1 \right)^2}{\left( x^2 + x - 2 \right)\left( x - 1 \right)\left( x^2 + x + 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{- \left( x - 1 \right)}{\left( x^2 + 2x - x - 2 \right)\left( x^2 + x + 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{- \left( x - 1 \right)}{\left\{ x\left( x + 2 \right) - 1\left( x + 2 \right) \right\}\left( x^2 + x + 1 \right)} \right]\]
\[ = \lim_{x \to 1} \left[ \frac{- \left( x - 1 \right)}{\left( x - 1 \right)\left( x + 2 \right)\left( x^2 + x + 1 \right)} \right]\]
\[ = \frac{- 1}{\left( 1 + 2 \right)\left( 1 + 1 + 1 \right)}\]
\[ = \frac{- 1}{9}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 0} \frac{2 x^2 + 3x + 4}{x^2 + 3x + 2}\]
\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]
\[\lim_{x \to 2} \left( \frac{x}{x - 2} - \frac{4}{x^2 - 2x} \right)\]
\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\]
\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]
\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a.
\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\]
\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\]
\[\lim_{n \to \infty} \left[ \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!} \right]\]
\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\]
\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\]
\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\]
\[\lim_{x \to 0} \frac{\sin x^2 \left( 1 - \cos x^2 \right)}{x^6}\]
\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\]
\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\]
\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\]
\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]
Evaluate the following limit:
\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]
\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]
\[\lim_{x \to \frac{\pi}{8}} \frac{\cot 4x - \cos 4x}{\left( \pi - 8x \right)^3}\]
\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]
\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( 4x - \pi \right)^2}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]
\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]
Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]
\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\]
\[\lim_{x \to 0} \frac{x}{\tan x} is\]
\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\] is equal at
\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\]
The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\]
Evaluate the following Limits: `lim_(x -> "a") ((x + 2)^(5/3) - ("a" + 2)^(5/3))/(x - "a")`
Which of the following function is not continuous at x = 0?
Evaluate the following limit.
`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`
Evaluate the following limit:
`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`