Advertisements
Advertisements
प्रश्न
\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\]
पर्याय
(a) 1
(b) 1/2
(c) 1/3
(d) 0
उत्तर
(c) 1/3
\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 . . . . . n^2}{n^3}\]
\[ = \lim_{n \to \infty} \frac{\Sigma n^2}{n^3}\]
\[ = \lim_{n \to \infty} \frac{n\left( n + 1 \right) \left( 2n + 1 \right)}{6 n^3}\]
\[ = \lim_{n \to 0} \frac{\left( n + 1 \right) \left( 2n + 1 \right)}{6 n^2}\]
\[ \text{Dividing the numerator and the denominator by n}^2 , we get:\]
\[ \lim_{n \to \infty} \frac{\frac{\left( n + 1 \right)}{n} \times \frac{\left( 2n + 1 \right)}{n}}{6}\]
\[ = \lim_{n \to \infty} \frac{\left( 1 + \frac{1}{n} \right) \left( 2 + \frac{1}{n} \right)}{6}\]
\[ \Rightarrow \frac{2}{6} = \frac{1}{3}\]
APPEARS IN
संबंधित प्रश्न
Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.
\[\lim_{x \to 0} \frac{2 x^2 + 3x + 4}{x^2 + 3x + 2}\]
\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\]
\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\]
\[\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^2 + \sqrt{2}x - 4}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a.
\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\]
\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\]
\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number.
Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\]
\[\lim_{x \to 0} \frac{\sin 3x}{5x}\]
\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\]
\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\]
\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\tan x - \sin x}{\sin 3x - 3 \sin x}\]
\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\]
\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\]
\[\lim_\theta \to 0 \frac{\sin 4\theta}{\tan 3\theta}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to
The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]
Evaluate the following limits: if `lim_(x -> 1)[(x^4 - 1)/(x - 1)] = lim_(x -> "a") [(x^3 - "a"^3)/(x - "a")]`, find all the value of a.
Evaluate the Following limit:
`lim_(x->3)[sqrt(x+6)/x]`
Evaluate the following limit :
`lim_(x->5)[(x^3-125)/(x^5-3125)]`
Evaluate the following limit :
`lim_(x->7)[[(root3(x)- root3(7))(root3(x) + root3(7)))/(x-7)]`
Evaluate the following limit.
`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`