मराठी

Lim N → ∞ [ 1 + 2 + 3 . . . . . . N − 1 N 2 ] - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\] 

उत्तर

\[\Rightarrow \lim_{n \to \infty} \left( \frac{1 + 2 + 3 + . . . n - 1}{n^2} \right)\]
\[ \Rightarrow \lim_{n \to \infty} \left[ \frac{n\left( n - 1 \right)}{2 n^2} \right]\]
\[ \Rightarrow \lim_{n \to \infty} \left[ \left( 1 - \frac{1}{n} \right) \times \frac{1}{2} \right]\]
\[When n \to \infty , then \frac{1}{n} \to 0 . \]
\[ = \frac{1}{2}\] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.6 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.6 | Q 15 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\lim_{x \to 2} \left( \frac{x}{x - 2} - \frac{4}{x^2 - 2x} \right)\] 


\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]


\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\] 


\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]


\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\] 


\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\] 


\[\lim_{x \to \infty} \left[ x\left\{ \sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right\} \right]\] 


Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\] 


\[\lim_{x \to 0} \frac{\sin x \cos x}{3x}\] 


\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\] 


\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\] 


\[\lim_{x \to 0} \frac{\sin x^n}{x^n}\] 


\[\lim_{x \to 0} \frac{\sin^2 4 x^2}{x^4}\] 


\[\lim_{x \to 0} \frac{x \cos x + 2 \sin x}{x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\] 


\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]


\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]


\[\lim_{x \to 0} \frac{\sin 2x \left( \cos 3x - \cos x \right)}{x^3}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\] 


\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]


\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\] 


\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\] 


\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\] 


Evaluate the following limit:

\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]

 


\[\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n\]


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]

 

\[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\] 


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]


\[\lim_{x \to 0^-} \frac{\sin x}{\sqrt{x}} .\] 


\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to 


If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]


\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to 


The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is 


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`


Let f(x) = `{{:(3^(1/x);   x < 0","                "then at"  x = 0),(lambda[x];   x ≥ 0","   lambda ∈ "R"):}`

Evaluate the Following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit:

`lim_(x->5)[(x^3-125)/(x^5-3125)]`


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×