Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\]
उत्तर
\[\lim_{x \to \frac{\pi}{4}} \left[ \frac{1 - \tan x}{1 - \sqrt{2} \sin x} \right]\]
\[\text{ It is of } \frac{0}{0} \text{ form } .\]
Rationalising the denominator, we get:
\[\lim_{x \to \frac{\pi}{4}} \left[ \frac{\left( 1 - \tan x \right) \left( 1 + \sqrt{2} \sin x \right)}{\left( 1 - \sqrt{2} \sin x \right) \left( 1 + \sqrt{2} \sin x \right)} \right]\]
\[ = \lim_{x \to \frac{\pi}{4}} \left[ \frac{\left( 1 - \tan x \right) \left( 1 + \sqrt{2} \sin x \right)}{1 - 2 \sin^2 x} \right]\]
\[ = \lim_{x \to \frac{\pi}{4}} \left[ \frac{\left( 1 - \frac{\sin x}{\cos x} \right) \left( 1 + \sqrt{2} \sin x \right)}{\cos 2x} \right]\]
\[ = \lim_{x \to \frac{\pi}{4}} \left[ \frac{\left( \cos x - \sin x \right) \left( 1 + \sqrt{2} \sin x \right)}{\cos x \cos 2x} \right] \]
\[ = \lim_{x \to \frac{\pi}{4}} \left[ \frac{\left( \cos x - \sin x \right) \left( 1 + \sqrt{2} \sin x \right)}{\cos x \cdot \left( \cos^2 x - \sin^2 x \right)} \right]\]
\[ = \lim_{x \to \frac{\pi}{4}} \left[ \frac{\left( \cos x - \sin x \right) \left( 1 + \sqrt{2} \sin x \right)}{\cos x \left[ \cos x - \sin x \right] \left[ \cos x + \sin x \right]} \right]\]
\[ = \frac{\left( 1 + \sqrt{2} \times \frac{1}{\sqrt{2}} \right)}{\left( \frac{1}{\sqrt{2}} \right) \left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)}\]
\[ = \frac{2}{\frac{1}{\sqrt{2}} \times \sqrt{2}}\]
\[ = 2\]
APPEARS IN
संबंधित प्रश्न
Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.
\[\lim_{x \to 2} \left( 3 - x \right)\]
\[\lim_{x \to 3} \frac{x^2 - 9}{x + 2}\]
\[\lim_{x \to - 5} \frac{2 x^2 + 9x - 5}{x + 5}\]
\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\]
\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\]
\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]
\[\lim_{x \to 4} \frac{x^3 - 64}{x^2 - 16}\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\]
\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\]
\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\]
\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\]
\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\left( \frac{\pi}{2} - x \right) \sin x - 2 \cos x}{\left( \frac{\pi}{2} - x \right) + \cot x}\]
Evaluate the following limit:
\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\] is equal at
\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\]
\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to
\[\lim_{x \to 2} \frac{\sqrt{1 + \sqrt{2 + x} - \sqrt{3}}}{x - 2}\] is equal to
The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\]
\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]
Evaluate the following limit:
`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Which of the following function is not continuous at x = 0?
Number of values of x where the function
f(x) = `{{:((tanxlog(x - 2))/(x^2 - 4x + 3); x∈(2, 4) - {3, π}),(1/6tanx; x = 3"," π):}`
is discontinuous, is ______.
Evaluate the following limits: `lim_(x ->3) [sqrt(x + 6)/x]`
Evaluate the following limit.
`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`
Evaluate the following limit:
`lim _ (x -> 5) [(x^3 - 125) / (x^5 - 3125)]`