मराठी

The Value of Lim N → ∞ { 1 + 2 + 3 + . . . + N N + 2 − N 2 } - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\] 

पर्याय

  • 1/2

  • −1

  • −1/2 

MCQ

उत्तर

 −1/2 

\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 + . . . . . n}{n + 2} - \frac{n}{2} \right]\]
\[ = \lim_{n \to \infty} \left[ \frac{n\left( n + 1 \right)}{2\left( n + 2 \right)} - \frac{n}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{n}{2} \left[ \frac{n + 1 - n - 2}{n + 2} \right]\]
\[ = \lim_{n \to \infty} \frac{n}{2}\left( \frac{- 1}{n + 2} \right)\]
\[ = \lim_{n \to \infty} \frac{- 1}{2\left( 1 + \frac{2}{n} \right)}\]
\[ = \frac{- 1}{2\left( 1 + 0 \right)}\]
\[ = - \frac{1}{2}\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.13 [पृष्ठ ८१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.13 | Q 38 | पृष्ठ ८१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\] 


\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\] 


\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\] 


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\] 


\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\] 


\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]


\[\lim_{x \to 1} \frac{x^3 + 3 x^2 - 6x + 2}{x^3 + 3 x^2 - 3x - 1}\]


\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x -  a}\]


\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\] 


\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\] 


\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\] 


\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\] 


\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\] 


\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\] 


\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\] 


\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]


\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\] 


\[\lim_{x \to 0} \frac{x \cos x + \sin x}{x^2 + \tan x}\] 


\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\] 


\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]


Evaluate the following limit: 

\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]


\[\lim_{x \to \frac{\pi}{2}} \frac{\sin 2x}{\cos x}\] 


Evaluate the following limit:

\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]


\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\] 


Evaluate the following limit:

\[\lim_{x \to \pi} \frac{1 - \sin\frac{x}{2}}{\cos\frac{x}{2}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right)}\]

 


\[\lim_{x \to \frac{3\pi}{2}} \frac{1 + {cosec}^3 x}{\cot^2 x}\]


Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\] 


If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\]  then \[\lim_{x \to 0} f\left( x \right) =\] 


\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\]  is equal to


\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to 


Evaluate the following limit:

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`


Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`


Evaluate the following limit :

`lim_(x->7)[[(root3(x)- root3(7))(root3(x) + root3(7)))/(x-7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×