मराठी

Evaluate the following limits: limx→0[(1-x)8-1(1-x)2-1] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`

बेरीज

उत्तर १

`lim_(x -> 0)((1 - x)^8 - 1)/((1 - x)^2 - 1)`

Put 1 – x = y
As x → 0, y → 1

∴ `lim_(x -> 0)((1 - x)^8 - 1)/((1 - x)^2 - 1) = lim_(y -> 1)(y^8 - 1^8)/(y^2 - 1^2)`

= `lim_(y -> 1)((y^8 -  1^8)/(y - 1))/((y^2 - 1^2)/(y - 1))    ...[(because y -> 1","  therefore y ≠ 1","),(therefore y - 1 ≠ 0)]`

= `(lim_(y -> 1)(y^8 -  1^8)/(y - 1))/(lim_(y -> 1)(y^2 -  1^2)/(y - 1))`

= `(8(1)^7)/(2(1)^1)     ...[because lim_(x -> "a")(x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`

= 4

shaalaa.com

उत्तर २

`lim_(x -> 0) ((1 - x)^8 - 1)/((1 - x)^2 - 1)`

Put 1 – x = y
As x → 0, y → 1

∴ `lim_(x -> 0)((1 - x)^8 - 1)/((1 - x)^2 - 1) = lim_(y -> 1)(y^8 - 1)/(y^2 - 1)`

= `lim_(y -> 1) ((y^4 - 1)(y^4 + 1))/(y^2 - 1)`

= `lim_(y -> 1) ((y^2 - 1)(y^2 + 1)(y^4 + 1))/(y^2 - 1)`

= `lim_(y -> 1)(y^2 + 1) (y^4 + 1)     ...[(because y -> 1 therefore y ≠ 1),(therefore y^2 ≠ 1),(therefore y^2 - 1 ≠ 0)]`

= (2) (2) = 4

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - EXERCISE 7.1 [पृष्ठ १००]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×