Advertisements
Advertisements
प्रश्न
Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`
उत्तर १
`lim_(x -> 0)((1 - x)^8 - 1)/((1 - x)^2 - 1)`
Put 1 – x = y
As x → 0, y → 1
∴ `lim_(x -> 0)((1 - x)^8 - 1)/((1 - x)^2 - 1) = lim_(y -> 1)(y^8 - 1^8)/(y^2 - 1^2)`
= `lim_(y -> 1)((y^8 - 1^8)/(y - 1))/((y^2 - 1^2)/(y - 1)) ...[(because y -> 1"," therefore y ≠ 1","),(therefore y - 1 ≠ 0)]`
= `(lim_(y -> 1)(y^8 - 1^8)/(y - 1))/(lim_(y -> 1)(y^2 - 1^2)/(y - 1))`
= `(8(1)^7)/(2(1)^1) ...[because lim_(x -> "a")(x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`
= 4
उत्तर २
`lim_(x -> 0) ((1 - x)^8 - 1)/((1 - x)^2 - 1)`
Put 1 – x = y
As x → 0, y → 1
∴ `lim_(x -> 0)((1 - x)^8 - 1)/((1 - x)^2 - 1) = lim_(y -> 1)(y^8 - 1)/(y^2 - 1)`
= `lim_(y -> 1) ((y^4 - 1)(y^4 + 1))/(y^2 - 1)`
= `lim_(y -> 1) ((y^2 - 1)(y^2 + 1)(y^4 + 1))/(y^2 - 1)`
= `lim_(y -> 1)(y^2 + 1) (y^4 + 1) ...[(because y -> 1 therefore y ≠ 1),(therefore y^2 ≠ 1),(therefore y^2 - 1 ≠ 0)]`
= (2) (2) = 4
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 5} \frac{x^3 - 125}{x^2 - 7x + 10}\]
\[\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x^2 + \sqrt{2}x - 4}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\]
\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\]
\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]
Show that \[\lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - x \right) \neq \lim_{x \to \infty} \left( \sqrt{x^2 + 1} - x \right)\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\]
\[\lim_{x \to 0} \frac{\tan^2 3x}{x^2}\]
\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\]
\[\lim_{x \to 0} \left( cosec x - \cot x \right)\]
\[\lim_{x \to 1} \frac{1 + \cos \pi x}{\left( 1 - x \right)^2}\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to
The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is
Evaluate the following limit:
`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`