English

Evaluate the following limits: limx→0[(1-x)8-1(1-x)2-1] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`

Sum

Solution 1

`lim_(x -> 0)((1 - x)^8 - 1)/((1 - x)^2 - 1)`

Put 1 – x = y
As x → 0, y → 1

∴ `lim_(x -> 0)((1 - x)^8 - 1)/((1 - x)^2 - 1) = lim_(y -> 1)(y^8 - 1^8)/(y^2 - 1^2)`

= `lim_(y -> 1)((y^8 -  1^8)/(y - 1))/((y^2 - 1^2)/(y - 1))    ...[(because y -> 1","  therefore y ≠ 1","),(therefore y - 1 ≠ 0)]`

= `(lim_(y -> 1)(y^8 -  1^8)/(y - 1))/(lim_(y -> 1)(y^2 -  1^2)/(y - 1))`

= `(8(1)^7)/(2(1)^1)     ...[because lim_(x -> "a")(x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`

= 4

shaalaa.com

Solution 2

`lim_(x -> 0) ((1 - x)^8 - 1)/((1 - x)^2 - 1)`

Put 1 – x = y
As x → 0, y → 1

∴ `lim_(x -> 0)((1 - x)^8 - 1)/((1 - x)^2 - 1) = lim_(y -> 1)(y^8 - 1)/(y^2 - 1)`

= `lim_(y -> 1) ((y^4 - 1)(y^4 + 1))/(y^2 - 1)`

= `lim_(y -> 1) ((y^2 - 1)(y^2 + 1)(y^4 + 1))/(y^2 - 1)`

= `lim_(y -> 1)(y^2 + 1) (y^4 + 1)     ...[(because y -> 1 therefore y ≠ 1),(therefore y^2 ≠ 1),(therefore y^2 - 1 ≠ 0)]`

= (2) (2) = 4

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Limits - EXERCISE 7.1 [Page 100]

RELATED QUESTIONS

\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]


\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\] 


\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\] 


\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]


\[\lim_{n \to \infty} \left[ \frac{1^2 + 2^2 + . . . + n^2}{n^3} \right]\]


\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]


\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\] 


\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\] 


\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\] 


\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]


\[\lim_{x \to 0} \frac{\tan 2x - \sin 2x}{x^3}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\] 


\[\lim_{n \to \infty} \left\{ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right\}\]is equal to


\[\lim_{x \to 1} \frac{\sin \pi x}{x - 1}\] 


The value of \[\lim_{x \to 0} \frac{1 - \cos x + 2 \sin x - \sin^3 x - x^2 + 3 x^4}{\tan^3 x - 6 \sin^2 x + x - 5 x^3}\] is 


Number of values of x where the function

f(x) = `{{:((tanxlog(x - 2))/(x^2 - 4x + 3); x∈(2, 4) - {3, π}),(1/6tanx; x = 3","  π):}`

is discontinuous, is ______.


If f(x) = `{{:(1 if x  "is rational"),(-1 if x  "is rational"):}` is continuous on ______.


Evaluate the Following limit:

`lim_(x->5) [(x^3 -125)/(x^5-3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×