Advertisements
Advertisements
Question
\[\lim_{n \to \infty} \left\{ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right\}\]is equal to
Options
0
1/2
1/9
2
Solution
1/2
\[\text{ Here }, T_n = \frac{1}{\left( 2n - 1 \right) \left( 2n + 1 \right)}\]
\[ \Rightarrow T_n = \frac{A}{\left( 2n - 1 \right)} + \frac{B}{\left( 2n + 1 \right)}\]
\[\text{ On equating } A = \frac{1}{2} \text{ and } B = - \frac{1}{2}: \]
\[ T_n = \frac{1}{2\left( 2n - 1 \right)} - \frac{1}{2\left( 2n + 1 \right)}\]
\[ \Rightarrow T_1 = \frac{1}{2}\left[ 1 - \frac{1}{3} \right]\]
\[ \Rightarrow T_2 = \frac{1}{2}\left[ \frac{1}{3} - \frac{1}{5} \right]\]
\[ \Rightarrow T_{n - 1} = \frac{1}{2}\left[ \frac{1}{2n - 1} - \frac{1}{2n - 1} \right]\]
\[ \Rightarrow T_n = \frac{1}{2}\left[ \frac{1}{2n - 1} - \frac{1}{2n + 1} \right]\]
\[ \Rightarrow T_1 + T_2 + T_3 . . . T_n = \frac{1}{2}\left[ 1 - \frac{1}{2n + 1} \right]\]
\[ \Rightarrow T_1 + T_2 + T_3 . . . T_n = \frac{1}{2}\left[ \frac{2n}{2n + 1} \right]\]
\[ \Rightarrow T_1 + T_2 + T_3 . . . T_n = \frac{n}{2n + 1}\]
\[ \therefore \lim_{n \to \infty} \left[ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} . . . \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right]\]
\[ = \lim_{n \to \infty} \left[ \sum^n_{n = 1} \frac{1}{\left( 2n - 1 \right) \left( 2n + 1 \right)} \right]\]
\[ = \lim_{n \to \infty} \left( \frac{n}{2n + 1} \right)\]
\[ = \lim_{n \to \infty} \left( \frac{1}{2 + \frac{1}{n}} \right) \left[ \text{ Dividing } N^r and D^r \text{ by } n \right]\]
\[ = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
\[\lim_{x \to 1} \frac{x^2 + 1}{x + 1}\]
\[\lim_{x \to 1} \frac{1 + \left( x - 1 \right)^2}{1 + x^2}\]
\[\lim_{x \to 0} 9\]
\[\lim_{x \to - 5} \frac{2 x^2 + 9x - 5}{x + 5}\]
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\]
\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]
\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\]
\[\lim_{x \to 1} \frac{1 - x^{- 1/3}}{1 - x^{- 2/3}}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x - a}\]
\[\lim_{x \to 27} \frac{\left( x^{1/3} + 3 \right) \left( x^{1/3} - 3 \right)}{x - 27}\]
\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\]
If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} \left( 4 + x \right),\] find all possible values of a.
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\]
\[\lim_{x \to 0} \frac{\sin x^2 \left( 1 - \cos x^2 \right)}{x^6}\]
\[\lim_{x \to 0} \frac{\sec 5x - \sec 3x}{\sec 3x - \sec x}\]
\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\]
\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{x \cos x + \sin x}{x^2 + \tan x}\]
\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]
\[\lim_{x \to \frac{\pi}{2}} \frac{\cot x}{\frac{\pi}{2} - x}\]
\[\lim_{x \to \frac{\pi}{8}} \frac{\cot 4x - \cos 4x}{\left( \pi - 8x \right)^3}\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin 2\pi x}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{f\left( x \right) - f\left( \frac{\pi}{4} \right)}{x - \frac{\pi}{4}},\]
\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]
\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[\lim_{x \to 0} \left( \cos x \right)^{1/\sin x}\]
\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
\[\lim_{x \to \infty} \frac{\sin x}{x} .\]
If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\] then \[\lim_{x \to 0} f\left( x \right) =\]
\[\lim_{x \to } \frac{1 - \cos 2x}{x} is\]
\[\lim_{x \to \infty} \frac{\sin x}{x}\] equals
\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to
\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`
Evaluate the following limit:
`lim_(x->3)[(sqrt(x+6))/x]`