Advertisements
Advertisements
प्रश्न
\[\lim_{n \to \infty} \left\{ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right\}\]is equal to
विकल्प
0
1/2
1/9
2
उत्तर
1/2
\[\text{ Here }, T_n = \frac{1}{\left( 2n - 1 \right) \left( 2n + 1 \right)}\]
\[ \Rightarrow T_n = \frac{A}{\left( 2n - 1 \right)} + \frac{B}{\left( 2n + 1 \right)}\]
\[\text{ On equating } A = \frac{1}{2} \text{ and } B = - \frac{1}{2}: \]
\[ T_n = \frac{1}{2\left( 2n - 1 \right)} - \frac{1}{2\left( 2n + 1 \right)}\]
\[ \Rightarrow T_1 = \frac{1}{2}\left[ 1 - \frac{1}{3} \right]\]
\[ \Rightarrow T_2 = \frac{1}{2}\left[ \frac{1}{3} - \frac{1}{5} \right]\]
\[ \Rightarrow T_{n - 1} = \frac{1}{2}\left[ \frac{1}{2n - 1} - \frac{1}{2n - 1} \right]\]
\[ \Rightarrow T_n = \frac{1}{2}\left[ \frac{1}{2n - 1} - \frac{1}{2n + 1} \right]\]
\[ \Rightarrow T_1 + T_2 + T_3 . . . T_n = \frac{1}{2}\left[ 1 - \frac{1}{2n + 1} \right]\]
\[ \Rightarrow T_1 + T_2 + T_3 . . . T_n = \frac{1}{2}\left[ \frac{2n}{2n + 1} \right]\]
\[ \Rightarrow T_1 + T_2 + T_3 . . . T_n = \frac{n}{2n + 1}\]
\[ \therefore \lim_{n \to \infty} \left[ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} . . . \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right]\]
\[ = \lim_{n \to \infty} \left[ \sum^n_{n = 1} \frac{1}{\left( 2n - 1 \right) \left( 2n + 1 \right)} \right]\]
\[ = \lim_{n \to \infty} \left( \frac{n}{2n + 1} \right)\]
\[ = \lim_{n \to \infty} \left( \frac{1}{2 + \frac{1}{n}} \right) \left[ \text{ Dividing } N^r and D^r \text{ by } n \right]\]
\[ = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 2} \left( 3 - x \right)\]
\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{4}{x^3 - 2 x^2} \right)\]
\[\lim_{x \to 1} \left( \frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)\]
\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\]
\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\]
\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\]
\[\lim_{x \to \infty} \frac{\sqrt{x^2 + a^2} - \sqrt{x^2 + b^2}}{\sqrt{x^2 + c^2} - \sqrt{x^2 + d^2}}\]
\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number.
\[\lim_{x \to - \infty} \left( \sqrt{x^2 - 8x} + x \right)\]
\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\]
\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\]
\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\]
\[\lim_{x \to 0} \frac{2 \sin x^\circ - \sin 2 x^\circ}{x^3}\]
\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\]
\[\lim_{x \to 0} \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}\]
\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]
Evaluate the following limit:
\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{1 - \cos6x}}{\sqrt{2}\left( \frac{\pi}{3} - x \right)}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - \cos x - \sin x}{\left( \frac{\pi}{4} - x \right)^2}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]
\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\]
\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]
\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
\[\lim_{x \to 0} \frac{\sin 2x}{x}\]
\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]
If \[\lim_{x \to 1} \frac{x + x^2 + x^3 + . . . + x^n - n}{x - 1} = 5050\] then n equal
\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to
\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to
The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is
Evaluate `lim_(h -> 0) ((a + h)^2 sin (a + h) - a^2 sina)/h`
Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`