हिंदी

Lim X → π 1 + Cos X Tan 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 

उत्तर

\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[ = \lim_{h \to 0} \frac{1 + \cos \left( \pi + h \right)}{\tan^2 \left( \pi + h \right)}\]
\[ = \lim_{h \to 0} \frac{1 - \cos h}{\tan^2 h}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{\tan^2 h}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{4\left( \frac{h^2}{4} \right) \times \frac{\tan^2 h}{h^2}}\]
\[ = \frac{1}{2} \frac{\lim_{h \to 0} \left( \frac{\sin \frac{h}{2}}{\frac{h}{2}} \right)^2}{\lim_{h \to 0} \left( \frac{\tan h}{h} \right)^2}\]
\[ = \frac{1}{2} \times \frac{\left( 1 \right)^2}{\left( 1 \right)^2} = \frac{1}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.8 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.8 | Q 32 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]


\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\] 


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]


\[\lim_{x \to 4} \frac{x^2 - 16}{\sqrt{x} - 2}\] 


\[\lim_{x \to 2} \frac{x^3 + 3 x^2 - 9x - 2}{x^3 - x - 6}\] 


\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\] 


If \[\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108,\]  find the value of n


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a


\[\lim_{x \to \infty} \frac{5 x^3 - 6}{\sqrt{9 + 4 x^6}}\]


\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\] 


\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . . n^3}{n^4} \right]\]


\[\lim_{x \to \infty} \left[ \frac{x^4 + 7 x^3 + 46x + a}{x^4 + 6} \right]\] where a is a non-zero real number. 


\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\] 


\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\] 


\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\] 


\[\lim_{x \to 0} \frac{1 - \cos mx}{x^2}\] 


\[\lim_{x \to 0} \frac{2x - \sin x}{\tan x + x}\] 


\[\lim_{x \to 0} \frac{x^2 - \tan 2x}{\tan x}\] 


\[\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{x^2}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos 2x}\] 


\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\] 


\[\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}\]


\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\] 


\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]


\[\lim_{x \to 0} \frac{\sin 2x}{e^x - 1}\] 


\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]


Write the value of \[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]


Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]


Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]


If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\]  then \[\lim_{x \to 0} f\left( x \right) =\] 


\[\lim_{x \to 0} \frac{\sin x^0}{x}\] 


\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to


\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to 


Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`


if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.


Evaluate the following limit:

`lim_(x->5)[(x^3-125)/(x^5-3125)]`


Evaluate the following limit.

`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×