हिंदी

Lim X → a Cos X − Cos a X − a - Mathematics

Advertisements
Advertisements

प्रश्न

\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\] 

उत्तर

\[\lim_{x \to a} \frac{\cos x - \cos a}{x - a}\]
\[ = \lim_{x \to a} \frac{- 2 \sin \left( \frac{x + a}{2} \right) \sin \left( \frac{x - a}{2} \right)}{2\left( \frac{x - a}{2} \right)} \left[ \because \cos A - \cos B - 2 \sin \left( \frac{A - B}{2} \right) \sin \left( \frac{A + B}{2} \right) \right]\]
\[ = \lim_{x \to a} - \sin \left( \frac{x + a}{2} \right) \left[ \because \lim_\theta \to a \sin\frac{\left( \theta - a \right)}{\left( \theta - a \right)} = 1 \right]\]
\[ = - \sin \left( \frac{2a}{2} \right)\]
\[ \Rightarrow - \sin a\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.8 [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.8 | Q 5 | पृष्ठ ६२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\lim_{x \to 0} \frac{2 x^2 + 3x + 4}{x^2 + 3x + 2}\] 


\[\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 2x - 3}\] 


\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\] 


\[\lim_{x \to 2} \left( \frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)\] 


\[\lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2\left( 2x - 3 \right)}{x^3 - 3 x^2 + 2x} \right]\] 


\[\lim_{x \to 0} \frac{\left( 1 + x \right)^6 - 1}{\left( 1 + x \right)^2 - 1}\] 


If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a


\[\lim_{x \to \infty} \frac{3 x^3 - 4 x^2 + 6x - 1}{2 x^3 + x^2 - 5x + 7}\] 


\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\] 


\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\] 


\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\] 


\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - \cos dx}\] 


\[\lim_{x \to 0} \frac{5 x \cos x + 3 \sin x}{3 x^2 + \tan x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{x^2 + 1 - \cos x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\] 


\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\] 


\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\sin 2x}{\cos x}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\sqrt{2 - \sin x} - 1}{\left( \frac{\pi}{2} - x \right)^2}\] 


\[\lim_{x \to \frac{\pi}{8}} \frac{\cot 4x - \cos 4x}{\left( \pi - 8x \right)^3}\] 


\[\lim_{x \to - 1} \frac{x^2 - x - 2}{\left( x^2 + x \right) + \sin \left( x + 1 \right)}\]


\[\lim_{x \to 2} \frac{x^2 - x - 2}{x^2 - 2x + \sin \left( x - 2 \right)}\] 


\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]


Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]


\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\] 


\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to


\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\]  is equal at 


\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to 


The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is 


Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`


Evaluate the Following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Evaluate the following limit:

`lim_(x->5)[(x^3-125)/(x^5-3125)]`


Evaluate the following limits: `lim_(x -> 3) [sqrt(x + 6)/x]`


Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit.

`lim_(x->3)[sqrt(x + 6)/x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×