हिंदी

If Lim X → a X 9 − a 9 X − a = 9 , Find All Possible Values of A. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\lim_{x \to a} \frac{x^9 - a^9}{x - a} = 9,\] find all possible values of a

उत्तर

\[\lim_{x \to a} \left[ \frac{x^9 - a^9}{x - a} \right] = 9\]
\[ \Rightarrow 9 a^8 = 9\]
\[ \Rightarrow a^8 = 1\]
\[ \Rightarrow a = \pm 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: Limits - Exercise 29.5 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 29 Limits
Exercise 29.5 | Q 13 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Suppose f(x)  = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}`  and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?


\[\lim_{x \to 2} \left( 3 - x \right)\] 


\[\lim_{x \to - 1}{\left( 4 x^2 + 2 \right)}\]


\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\] 


\[\lim_{x \to a} \frac{x^{5/7} - a^{5/7}}{x^{2/7} - a^{2/7}}\] 


\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\] 


\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\] 


\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\] 


\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin \left( a + h \right) - a^2 \sin a}{h}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 2x - \cos 8x}\]


\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}\]


\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\] 


\[\lim_\theta \to 0 \frac{1 - \cos 4\theta}{1 - \cos 6\theta}\] 


\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]


Evaluate the following limit: 

\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]


\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]


\[\lim_{x \to \frac{\pi}{8}} \frac{\cot 4x - \cos 4x}{\left( \pi - 8x \right)^3}\] 


\[\lim_{x \to a} \frac{\cos \sqrt{x} - \cos \sqrt{a}}{x - a}\] 


\[\lim_{n \to \infty} 2^{n - 1} \sin \left( \frac{a}{2^n} \right)\] 

 


\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\] 


\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\] 


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]

 

Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]


\[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


\[\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + . . . + n^2}{n^3}\] 


\[\lim_{x \to 3} \frac{x - 3}{\left| x - 3 \right|},\] is equal to


\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\] 


\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to 


\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\]  is equal to


\[\lim_{x \to 0} \frac{8}{x^8}\left\{ 1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right\}\] is equal to 


The value of \[\lim_{x \to \infty} \frac{n!}{\left( n + 1 \right)! - n!}\] 


Evaluate the following limit:

`lim_(x -> 3) [sqrt(x + 6)/x]`


Evaluate the following Limit:

`lim_(x -> 0) ((1 + x)^"n" - 1)/x`


If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.


If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.


Evaluate the Following limit:

`lim_(x->3)[sqrt(x+6)/x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×